CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Architecture and Code Optimization Pub Date : 2024-05-14 DOI:10.1145/3664925
Dongmoon Min, Ilkwon Byun, Gyu-hyeon Lee, Jangwoo Kim
{"title":"CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling","authors":"Dongmoon Min, Ilkwon Byun, Gyu-hyeon Lee, Jangwoo Kim","doi":"10.1145/3664925","DOIUrl":null,"url":null,"abstract":"<p>For datacenter architects, it is the most important goal to minimize <i>the datacenter’s total cost of ownership for the target performance</i> (i.e., TCO/performance). As the major component of a datacenter is a server farm, the most effective way of reducing TCO/performance is to improve the server’s performance and power efficiency. To achieve the goal, we claim that it is highly promising to reduce each server’s temperature to its most cost-effective point (or temperature scaling). </p><p>In this paper, we propose <i>CoolDC</i>, a novel and immediately-applicable low-temperature cooling method to minimize the datacenter’s TCO. The key idea is to find and apply the most cost-effective sub-freezing temperature to target servers and workloads. For that purpose, we first apply the immersion cooling method to the entire servers to maintain a stable low temperature with little extra cooling and maintenance costs. Second, we define the TCO-optimal temperature for datacenter operation (e.g., 248K~273K (-25℃~0℃)) by carefully estimating all the costs and benefits at low temperatures. Finally, we propose CoolDC, our immersion-cooling datacenter architecture to run every workload at its own TCO-optimal temperature. By incorporating our low-temperature workload-aware temperature scaling, CoolDC achieves 12.7% and 13.4% lower TCO/performance than the conventional air-cooled and immersion-cooled datacenters, respectively, without any modification to existing computers.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"54 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3664925","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

For datacenter architects, it is the most important goal to minimize the datacenter’s total cost of ownership for the target performance (i.e., TCO/performance). As the major component of a datacenter is a server farm, the most effective way of reducing TCO/performance is to improve the server’s performance and power efficiency. To achieve the goal, we claim that it is highly promising to reduce each server’s temperature to its most cost-effective point (or temperature scaling).

In this paper, we propose CoolDC, a novel and immediately-applicable low-temperature cooling method to minimize the datacenter’s TCO. The key idea is to find and apply the most cost-effective sub-freezing temperature to target servers and workloads. For that purpose, we first apply the immersion cooling method to the entire servers to maintain a stable low temperature with little extra cooling and maintenance costs. Second, we define the TCO-optimal temperature for datacenter operation (e.g., 248K~273K (-25℃~0℃)) by carefully estimating all the costs and benefits at low temperatures. Finally, we propose CoolDC, our immersion-cooling datacenter architecture to run every workload at its own TCO-optimal temperature. By incorporating our low-temperature workload-aware temperature scaling, CoolDC achieves 12.7% and 13.4% lower TCO/performance than the conventional air-cooled and immersion-cooled datacenters, respectively, without any modification to existing computers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CoolDC:具有工作负载感知温度扩展功能的低成本浸入式冷却数据中心
对于数据中心架构师来说,最重要的目标是最大限度地降低数据中心在目标性能下的总拥有成本(即 TCO/性能)。由于数据中心的主要组成部分是服务器群,降低总拥有成本/性能的最有效方法就是提高服务器的性能和能效。为了实现这一目标,我们认为将每台服务器的温度降低到最具成本效益的点(或温度缩放)是非常有前途的。在本文中,我们提出了一种新颖且可立即应用的低温冷却方法 CoolDC,以最大限度地降低数据中心的总体拥有成本。其关键思路是为目标服务器和工作负载找到并应用最具成本效益的低温。为此,我们首先对整个服务器采用浸入式冷却方法,以保持稳定的低温,同时减少额外的冷却和维护成本。其次,通过仔细估算低温下的所有成本和收益,我们确定了数据中心运行的 TCO 最佳温度(例如,248K~273K(-25℃~0℃))。最后,我们提出了 CoolDC,即我们的浸入式冷却数据中心架构,可使每个工作负载在各自的 TCO 最佳温度下运行。通过采用我们的低温工作负载感知温度扩展技术,CoolDC 的总体拥有成本/性能分别比传统的风冷数据中心和浸入式冷却数据中心低 12.7% 和 13.4%,而且无需对现有计算机进行任何改动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
期刊最新文献
A Survey of General-purpose Polyhedral Compilers Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1