ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data

IF 2.3 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS R Journal Pub Date : 2023-08-26 DOI:10.32614/rj-2023-035
Duc-Khanh To, Gianfranco Adimari, Monica Chiogna
{"title":"ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data","authors":"Duc-Khanh To, Gianfranco Adimari, Monica Chiogna","doi":"10.32614/rj-2023-035","DOIUrl":null,"url":null,"abstract":"This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"69 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an R package for ROC analysis in three-class classification problems, for clustered data in the presence of covariates, named ClusROC. The clustered data that we address have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies or repeated measurements. This package implements point and interval covariate-specific estimation of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions through two practical examples from different fields of research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ClusROC:一个用于聚类数据的三类分类问题的ROC分析的R包
本文介绍了一个用于三类分类问题的ROC分析的R包,用于存在协变量的聚类数据,称为ClusROC。我们处理的聚类数据有一些层次结构,例如,来自纵向研究或重复测量的依赖数据。该包实现了在固定的一对阈值、ROC曲面、ROC曲面下的体积和最优阈值对上的真类分数的点和区间协变量特定估计。我们通过两个来自不同研究领域的实际例子来说明所实现的函数的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
R Journal
R Journal COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍: The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R. The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to: - put their contribution in context, in particular discuss related R functions or packages; - explain the motivation for their contribution; - provide code examples that are reproducible.
期刊最新文献
binGroup2: Statistical Tools for Infection Identification via Group Testing. glmmPen: High Dimensional Penalized Generalized Linear Mixed Models. Three-Way Correspondence Analysis in R nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting A Workflow for Estimating and Visualising Excess Mortality During the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1