J. A. F. Torvisco, R. Benítez, M. R. Arias, J. Cabello Sánchez
{"title":"nlstac: Non-Gradient Separable Nonlinear Least Squares Fitting","authors":"J. A. F. Torvisco, R. Benítez, M. R. Arias, J. Cabello Sánchez","doi":"10.32614/rj-2023-040","DOIUrl":null,"url":null,"abstract":"A new package for nonlinear least squares fitting is introduced in this paper. This package implements a recently developed algorithm that, for certain types of nonlinear curve fitting, reduces the number of nonlinear parameters to be fitted. One notable feature of this method is the absence of initialization which is typically necessary for nonlinear fitting gradient-based algorithms. Instead, just some bounds for the nonlinear parameters are required. Even though convergence for this method is guaranteed for exponential decay using the max-norm, the algorithm exhibits remarkable robustness, and its use has been extended to a wide range of functions using the Euclidean norm. Furthermore, this data-fitting package can also serve as a valuable resource for providing accurate initial parameters to other algorithms that rely on them.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"55 8","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-040","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A new package for nonlinear least squares fitting is introduced in this paper. This package implements a recently developed algorithm that, for certain types of nonlinear curve fitting, reduces the number of nonlinear parameters to be fitted. One notable feature of this method is the absence of initialization which is typically necessary for nonlinear fitting gradient-based algorithms. Instead, just some bounds for the nonlinear parameters are required. Even though convergence for this method is guaranteed for exponential decay using the max-norm, the algorithm exhibits remarkable robustness, and its use has been extended to a wide range of functions using the Euclidean norm. Furthermore, this data-fitting package can also serve as a valuable resource for providing accurate initial parameters to other algorithms that rely on them.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.