{"title":"rankFD: An R Software Package for Nonparametric Analysis of General Factorial Designs","authors":"Frank Konietschke, Edgar Brunner","doi":"10.32614/rj-2023-029","DOIUrl":null,"url":null,"abstract":"Many experiments can be modeled by a factorial design which allows statistical analysis of main factors and their interactions. A plethora of parametric inference procedures have been developed, for instance based on normality and additivity of the effects. However, often, it is not reasonable to assume a parametric model, or even normality, and effects may not be expressed well in terms of location shifts. In these situations, the use of a fully nonparametric model may be advisable. Nevertheless, until very recently, the straightforward application of nonparametric methods in complex designs has been hampered by the lack of a comprehensive R package. This gap has now been closed by the novel R-package [rankFD](https://CRAN.R-project.org/package=rankFD) that implements current state of the art nonparametric ranking methods for the analysis of factorial designs. In this paper, we describe its use, along with detailed interpretations of the results.","PeriodicalId":51285,"journal":{"name":"R Journal","volume":"2012 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"R Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2023-029","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Many experiments can be modeled by a factorial design which allows statistical analysis of main factors and their interactions. A plethora of parametric inference procedures have been developed, for instance based on normality and additivity of the effects. However, often, it is not reasonable to assume a parametric model, or even normality, and effects may not be expressed well in terms of location shifts. In these situations, the use of a fully nonparametric model may be advisable. Nevertheless, until very recently, the straightforward application of nonparametric methods in complex designs has been hampered by the lack of a comprehensive R package. This gap has now been closed by the novel R-package [rankFD](https://CRAN.R-project.org/package=rankFD) that implements current state of the art nonparametric ranking methods for the analysis of factorial designs. In this paper, we describe its use, along with detailed interpretations of the results.
R JournalCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
2.70
自引率
0.00%
发文量
40
审稿时长
>12 weeks
期刊介绍:
The R Journal is the open access, refereed journal of the R project for statistical computing. It features short to medium length articles covering topics that should be of interest to users or developers of R.
The R Journal intends to reach a wide audience and have a thorough review process. Papers are expected to be reasonably short, clearly written, not too technical, and of course focused on R. Authors of refereed articles should take care to:
- put their contribution in context, in particular discuss related R functions or packages;
- explain the motivation for their contribution;
- provide code examples that are reproducible.