Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2023-11-09 DOI:10.3390/fractalfract7110812
Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan
{"title":"Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform","authors":"Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan","doi":"10.3390/fractalfract7110812","DOIUrl":null,"url":null,"abstract":"The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Additionally, the system’s approximative solution is illustrated graphically. The results show that these techniques are extremely effective, practically applicable for usage in such issues, and adaptable to other nonlinear issues.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 45","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110812","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Additionally, the system’s approximative solution is illustrated graphically. The results show that these techniques are extremely effective, practically applicable for usage in such issues, and adaptable to other nonlinear issues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caputo算子意义下分数阶KdV系统的一种新变换计算分析
物理和工程领域的科学工作的主要特点是为各种物理问题建立模型并提出解决方案。为了求解时间分数阶耦合的Korteweg-De Vries (KdV)方程,我们结合了新的Yang变换、同伦摄动方法和Adomian分解方法。KdV模型是至关重要的,因为它们可以准确地代表各种物理问题,包括薄膜流动和浅水表面的波浪。分数阶导数被认为是卡普托意义上的。这些方法通过符号计算应用简单的步骤来提供收敛的级数解。用不同的非线性时间分数型KdV系统来测试所建议技术的有效性。对称模式是KdV方程的基本特征,从图形表示可以看出解的对称方面。数值结果表明,只需要少量的项就可以达到精确、有效和可信的近似值。此外,还用图形说明了系统的近似解。结果表明,这些方法非常有效,切实适用于此类问题,也适用于其他非线性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
On the Impacts of the Global Sea Level Dynamics Research on Application of Fractional Calculus Operator in Image Underlying Processing The Multiscale Principle in Nature (Principium luxuriæ): Linking Multiscale Thermodynamics to Living and Non-Living Complex Systems A Numerical Scheme and Application to the Fractional Integro-Differential Equation Using Fixed-Point Techniques Correction: Panchal et al. 3D FEM Simulation and Analysis of Fractal Electrode-Based FBAR Resonator for Tetrachloroethene (PCE) Gas Detection. Fractal Fract. 2022, 6, 491
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1