Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan
{"title":"Computational Analysis of Fractional-Order KdV Systems in the Sense of the Caputo Operator via a Novel Transform","authors":"Mashael M. AlBaidani, Abdul Hamid Ganie, Adnan Khan","doi":"10.3390/fractalfract7110812","DOIUrl":null,"url":null,"abstract":"The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Additionally, the system’s approximative solution is illustrated graphically. The results show that these techniques are extremely effective, practically applicable for usage in such issues, and adaptable to other nonlinear issues.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":" 45","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110812","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The main features of scientific efforts in physics and engineering are the development of models for various physical issues and the development of solutions. In order to solve the time-fractional coupled Korteweg–De Vries (KdV) equation, we combine the novel Yang transform, the homotopy perturbation approach, and the Adomian decomposition method in the present investigation. KdV models are crucial because they can accurately represent a variety of physical problems, including thin-film flows and waves on shallow water surfaces. The fractional derivative is regarded in the Caputo meaning. These approaches apply straightforward steps through symbolic computation to provide a convergent series solution. Different nonlinear time-fractional KdV systems are used to test the effectiveness of the suggested techniques. The symmetry pattern is a fundamental feature of the KdV equations and the symmetrical aspect of the solution can be seen from the graphical representations. The numerical outcomes demonstrate that only a small number of terms are required to arrive at an approximation that is exact, efficient, and trustworthy. Additionally, the system’s approximative solution is illustrated graphically. The results show that these techniques are extremely effective, practically applicable for usage in such issues, and adaptable to other nonlinear issues.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.