Christian Hirsch, Johannes Krebs, Claudia Redenbach
{"title":"Persistent homology based goodness-of-fit tests for spatial tessellations","authors":"Christian Hirsch, Johannes Krebs, Claudia Redenbach","doi":"10.1080/10485252.2023.2280022","DOIUrl":null,"url":null,"abstract":"AbstractMotivated by the rapidly increasing relevance of virtual material design in the domain of materials science, it has become essential to assess whether topological properties of stochastic models for a spatial tessellation are in accordance with a given dataset. Recently, tools from topological data analysis such as the persistence diagram have allowed to reach profound insights in a variety of application contexts. In this work, we establish the asymptotic normality of a variety of test statistics derived from a tessellation-adapted refinement of the persistence diagram. Since in applications, it is common to work with tessellation data subject to interactions, we establish our main results for Voronoi and Laguerre tessellations whose generators form a Gibbs point process. We elucidate how these conceptual results can be used to derive goodness of fit tests, and then investigate their power in a simulation study. Finally, we apply our testing methodology to a tessellation describing real foam data.Keywords: Tessellationtopological data analysisgoodness-of-fitpersistence diagram2010 Mathematics Subject Classifications: 60K3560F1082C22 AcknowledgmentsWe thank the two anonymous referees for their careful reading of the manuscript. Their comments and suggestions substantially improved the quality of the presentation. We thank Anne Jung (Helmut Schmidt University Hamburg) for providing the foam sample and Christian Jung (RPTU Kaiserslautern-Landau) for computing the Laguerre approximation.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingJohannes Krebs was partially supported by the German Research Foundation (DFG), Grant Number KR-4977/2-1.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" 8","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2280022","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractMotivated by the rapidly increasing relevance of virtual material design in the domain of materials science, it has become essential to assess whether topological properties of stochastic models for a spatial tessellation are in accordance with a given dataset. Recently, tools from topological data analysis such as the persistence diagram have allowed to reach profound insights in a variety of application contexts. In this work, we establish the asymptotic normality of a variety of test statistics derived from a tessellation-adapted refinement of the persistence diagram. Since in applications, it is common to work with tessellation data subject to interactions, we establish our main results for Voronoi and Laguerre tessellations whose generators form a Gibbs point process. We elucidate how these conceptual results can be used to derive goodness of fit tests, and then investigate their power in a simulation study. Finally, we apply our testing methodology to a tessellation describing real foam data.Keywords: Tessellationtopological data analysisgoodness-of-fitpersistence diagram2010 Mathematics Subject Classifications: 60K3560F1082C22 AcknowledgmentsWe thank the two anonymous referees for their careful reading of the manuscript. Their comments and suggestions substantially improved the quality of the presentation. We thank Anne Jung (Helmut Schmidt University Hamburg) for providing the foam sample and Christian Jung (RPTU Kaiserslautern-Landau) for computing the Laguerre approximation.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingJohannes Krebs was partially supported by the German Research Foundation (DFG), Grant Number KR-4977/2-1.
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.