Xuejun Wang, Xi Chen, Tien-Chung Hu, Andrei Volodin
{"title":"Complete <i>f</i> -moment convergence for <i>m</i> -asymptotic negatively associated random variables and related statistical applications","authors":"Xuejun Wang, Xi Chen, Tien-Chung Hu, Andrei Volodin","doi":"10.1080/10485252.2023.2280004","DOIUrl":null,"url":null,"abstract":"AbstractIn this article, the complete f-moment convergence for m-asymptotic negatively associated random variables is investigated. As applications, we establish the strong consistency of the least square estimator in the simple linear errors-in-variables models and the complete consistency for estimator in the semiparametric regression model based on m-asymptotic negatively associated errors. We also give some simulations to assess the finite sample performance of the theoretical results.Keywords: m-Asymptotic negatively associated random variablescomplete f-moment convergenceconsistencyerrors-in-variables modelssemiparametric regression modelsMathematics Subject Classifications: 60F1562G20 AcknowledgmentsThe authors are most grateful to the Editor and anonymous referee for carefully reading the manuscript and valuable suggestions which helped in improving an earlier version of this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingSupported by the National Social Science Foundation of China (22BTJ059).","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" 94","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2280004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn this article, the complete f-moment convergence for m-asymptotic negatively associated random variables is investigated. As applications, we establish the strong consistency of the least square estimator in the simple linear errors-in-variables models and the complete consistency for estimator in the semiparametric regression model based on m-asymptotic negatively associated errors. We also give some simulations to assess the finite sample performance of the theoretical results.Keywords: m-Asymptotic negatively associated random variablescomplete f-moment convergenceconsistencyerrors-in-variables modelssemiparametric regression modelsMathematics Subject Classifications: 60F1562G20 AcknowledgmentsThe authors are most grateful to the Editor and anonymous referee for carefully reading the manuscript and valuable suggestions which helped in improving an earlier version of this paper.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingSupported by the National Social Science Foundation of China (22BTJ059).
期刊介绍:
Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics:
Nonparametric modeling,
Nonparametric function estimation,
Rank and other robust and distribution-free procedures,
Resampling methods,
Lack-of-fit testing,
Multivariate analysis,
Inference with high-dimensional data,
Dimension reduction and variable selection,
Methods for errors in variables, missing, censored, and other incomplete data structures,
Inference of stochastic processes,
Sample surveys,
Time series analysis,
Longitudinal and functional data analysis,
Nonparametric Bayes methods and decision procedures,
Semiparametric models and procedures,
Statistical methods for imaging and tomography,
Statistical inverse problems,
Financial statistics and econometrics,
Bioinformatics and comparative genomics,
Statistical algorithms and machine learning.
Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order.
Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.