Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI

Rajat Kumar, Helmut H. Strey, Lilianne R. Mujica-Parodi
{"title":"Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI","authors":"Rajat Kumar, Helmut H. Strey, Lilianne R. Mujica-Parodi","doi":"10.1007/s42113-023-00185-2","DOIUrl":null,"url":null,"abstract":"Abstract As a field, control systems engineering has developed quantitative methods to characterize the regulation of systems or processes, whose functioning is ubiquitous within synthetic systems. In this context, a control circuit is objectively “well regulated” when discrepancy between desired and achieved output trajectories is minimized and “robust” to the degree that it can regulate well in response to a wide range of stimuli. Most psychiatric disorders are assumed to reflect dysregulation of brain circuits. Yet, probing circuit regulation requires fundamentally different analytic strategies than the correlations relied upon for analyses of connectivity and their resultant networks. Here, we demonstrate how well-established methods for system identification in control systems engineering may be applied to functional magnetic resonance imaging (fMRI) data to extract generative computational models of human brain circuits. As required for clinical neurodiagnostics, we show these models to be extractable even at the level of the single subject. Control parameters provide two quantitative measures of direct relevance for psychiatric disorders: a circuit’s sensitivity to external perturbation and its dysregulation.","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":" 26","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-023-00185-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract As a field, control systems engineering has developed quantitative methods to characterize the regulation of systems or processes, whose functioning is ubiquitous within synthetic systems. In this context, a control circuit is objectively “well regulated” when discrepancy between desired and achieved output trajectories is minimized and “robust” to the degree that it can regulate well in response to a wide range of stimuli. Most psychiatric disorders are assumed to reflect dysregulation of brain circuits. Yet, probing circuit regulation requires fundamentally different analytic strategies than the correlations relied upon for analyses of connectivity and their resultant networks. Here, we demonstrate how well-established methods for system identification in control systems engineering may be applied to functional magnetic resonance imaging (fMRI) data to extract generative computational models of human brain circuits. As required for clinical neurodiagnostics, we show these models to be extractable even at the level of the single subject. Control parameters provide two quantitative measures of direct relevance for psychiatric disorders: a circuit’s sensitivity to external perturbation and its dysregulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用单受试者fMRI量化神经控制回路调节的个体变异性
作为一个领域,控制系统工程开发了定量方法来表征系统或过程的调节,其功能在合成系统中无处不在。在这种情况下,当期望和实现的输出轨迹之间的差异被最小化时,控制电路客观上是“良好调节”的,并且“鲁棒”到可以对广泛的刺激进行良好调节的程度。大多数精神疾病被认为是脑回路失调的反映。然而,探测电路调节需要根本不同的分析策略,而不是依赖于分析连通性及其产生的网络的相关性。在这里,我们展示了控制系统工程中成熟的系统识别方法如何应用于功能磁共振成像(fMRI)数据,以提取人类大脑回路的生成计算模型。作为临床神经诊断的需要,我们证明这些模型即使在单个受试者的水平上也是可提取的。控制参数提供了两种与精神疾病直接相关的定量测量:电路对外部扰动的敏感性及其失调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI Towards Dependent Race Models for the Stop-Signal Paradigm Modeling Time Cell Neuron-Level Dynamics Probabilistic Choice Induced by Strength of Preference An Extension and Clinical Application of the SIMPLE Model to the Free Recall of Repeated and Semantically Related Items
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1