Holger Boche, Yannik N. Böck, Ullrich J. Mönich, Frank H. P. Fitzek
{"title":"Trustworthy Digital Representations of Analog Information—An Application-Guided Analysis of a Fundamental Theoretical Problem in Digital Twinning","authors":"Holger Boche, Yannik N. Böck, Ullrich J. Mönich, Frank H. P. Fitzek","doi":"10.3390/a16110514","DOIUrl":null,"url":null,"abstract":"This article compares two methods of algorithmically processing bandlimited time-continuous signals in light of the general problem of finding “suitable” representations of analog information on digital hardware. Albeit abstract, we argue that this problem is fundamental in digital twinning, a signal-processing paradigm the upcoming 6G communication-technology standard relies on heavily. Using computable analysis, we formalize a general framework of machine-readable descriptions for representing analytic objects on Turing machines. Subsequently, we apply this framework to sampling and interpolation theory, providing a thoroughly formalized method for digitally processing the information carried by bandlimited analog signals. We investigate discrete-time descriptions, which form the implicit quasi-standard in digital signal processing, and establish continuous-time descriptions that take the signal’s continuous-time behavior into account. Motivated by an exemplary application of digital twinning, we analyze a textbook model of digital communication systems accordingly. We show that technologically fundamental properties, such as a signal’s (Banach-space) norm, can be computed from continuous-time, but not from discrete-time descriptions of the signal. Given the high trustworthiness requirements within 6G, e.g., employed software must satisfy assessment criteria in a provable manner, we conclude that the problem of “trustworthy” digital representations of analog information is indeed essential to near-future information technology.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":" 22","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article compares two methods of algorithmically processing bandlimited time-continuous signals in light of the general problem of finding “suitable” representations of analog information on digital hardware. Albeit abstract, we argue that this problem is fundamental in digital twinning, a signal-processing paradigm the upcoming 6G communication-technology standard relies on heavily. Using computable analysis, we formalize a general framework of machine-readable descriptions for representing analytic objects on Turing machines. Subsequently, we apply this framework to sampling and interpolation theory, providing a thoroughly formalized method for digitally processing the information carried by bandlimited analog signals. We investigate discrete-time descriptions, which form the implicit quasi-standard in digital signal processing, and establish continuous-time descriptions that take the signal’s continuous-time behavior into account. Motivated by an exemplary application of digital twinning, we analyze a textbook model of digital communication systems accordingly. We show that technologically fundamental properties, such as a signal’s (Banach-space) norm, can be computed from continuous-time, but not from discrete-time descriptions of the signal. Given the high trustworthiness requirements within 6G, e.g., employed software must satisfy assessment criteria in a provable manner, we conclude that the problem of “trustworthy” digital representations of analog information is indeed essential to near-future information technology.