Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Turkish Journal of Electrical Engineering and Computer Sciences Pub Date : 2023-09-29 DOI:10.55730/1300-0632.4022
YEŞİM ÖNİZ, MEHMET AYYILDIZ
{"title":"Recognizing handwritten digits using spiking neural networks with learning algorithms based on sliding mode control theory","authors":"YEŞİM ÖNİZ, MEHMET AYYILDIZ","doi":"10.55730/1300-0632.4022","DOIUrl":null,"url":null,"abstract":"In this paper, a spiking neural network (SNN) has been proposed for recognizing the digits written on the LCD screen of an experimental setup. The convergence of the learning algorithm has been ensured by using sliding mode control (SMC) theory and the Lyapunov stability method for the adaptation of the network parameters. The spike response model (SRM) has been utilized in the design of the SNN. The performance of the proposed learning scheme has been evaluated both on the experimental data and on the MNIST dataset. The simulated and experimental results of the SNN structure have been compared with the responses of a conventional neural network (ANN) for which the weight update rules have been also derived using SMC theory. The conducted simulations and experimental studies reveal that convergence can be ensured for the proposed learning scheme and the SNN yields higher recognition accuracy compared to a conventional ANN.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.4022","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a spiking neural network (SNN) has been proposed for recognizing the digits written on the LCD screen of an experimental setup. The convergence of the learning algorithm has been ensured by using sliding mode control (SMC) theory and the Lyapunov stability method for the adaptation of the network parameters. The spike response model (SRM) has been utilized in the design of the SNN. The performance of the proposed learning scheme has been evaluated both on the experimental data and on the MNIST dataset. The simulated and experimental results of the SNN structure have been compared with the responses of a conventional neural network (ANN) for which the weight update rules have been also derived using SMC theory. The conducted simulations and experimental studies reveal that convergence can be ensured for the proposed learning scheme and the SNN yields higher recognition accuracy compared to a conventional ANN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑模控制理论的脉冲神经网络手写数字识别
本文提出了一种尖峰神经网络(SNN)来识别写在实验装置LCD屏幕上的数字。采用滑模控制理论和Lyapunov稳定性方法对网络参数进行自适应,保证了学习算法的收敛性。尖峰响应模型(SRM)已被应用于SNN的设计中。在实验数据和MNIST数据集上对所提出的学习方案的性能进行了评估。将SNN结构的仿真和实验结果与传统神经网络(ANN)的响应进行了比较,并利用SMC理论推导了其权值更新规则。仿真和实验研究表明,所提出的学习方案可以保证收敛性,并且与传统的人工神经网络相比,SNN具有更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Turkish Journal of Electrical Engineering and Computer Sciences
Turkish Journal of Electrical Engineering and Computer Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.90
自引率
9.10%
发文量
95
审稿时长
6.9 months
期刊介绍: The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence. Contribution is open to researchers of all nationalities.
期刊最新文献
A comparative study of YOLO models and a transformer-based YOLOv5 model for mass detection in mammograms Feature selection optimization with filtering and wrapper methods: two disease classification cases New modified carrier-based level-shifted PWM control for NPC rectifiers considered for implementation in EV fast chargers FuzzyCSampling: A Hybrid fuzzy c-means clustering sampling strategy for imbalanced datasets A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1