Pre-screening for Non-Diagnostic Coronary CT Angiography

Ramtin Hakimjavadi, Juan Lu, Yeung Yam, Girish Dwivedi, Gary R Small, Benjamin J W Chow
{"title":"Pre-screening for Non-Diagnostic Coronary CT Angiography","authors":"Ramtin Hakimjavadi, Juan Lu, Yeung Yam, Girish Dwivedi, Gary R Small, Benjamin J W Chow","doi":"10.1093/ehjimp/qyad026","DOIUrl":null,"url":null,"abstract":"Abstract Aims Indiscriminate coronary computed tomography angiography (CCTA) referrals for suspected coronary artery disease could result in a higher rate of equivocal and non-diagnostic studies, leading to inappropriate downstream resource utilization or delayed time to diagnosis. We sought to develop a simple clinical tool for predicting the likelihood of a non-diagnostic CCTA to help identify patients who might be better served with a different test. Methods and results We developed a clinical scoring system from a cohort of 21 492 consecutive patients who underwent CCTA between February 2006 and May 2021. Coronary computed tomography angiography study results were categorized as normal, abnormal, or non-diagnostic. Multivariable logistic regression analysis was conducted to produce a model that predicted the likelihood of a non-diagnostic test. Machine learning (ML) models were utilized to validate the predictor selection and prediction performance. Both logistic regression and ML models achieved fair discriminate ability with an area under the curve of 0.630 [95% confidence interval (CI) 0.618–0.641] and 0.634 (95% CI 0.612–0.656), respectively. The presence of a cardiac implant and weight >100 kg were among the most influential predictors of a non-diagnostic study. Conclusion We developed a model that could be implemented at the ‘point-of-scheduling’ to identify patients who would be best served by another non-invasive diagnostic test.","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyad026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Aims Indiscriminate coronary computed tomography angiography (CCTA) referrals for suspected coronary artery disease could result in a higher rate of equivocal and non-diagnostic studies, leading to inappropriate downstream resource utilization or delayed time to diagnosis. We sought to develop a simple clinical tool for predicting the likelihood of a non-diagnostic CCTA to help identify patients who might be better served with a different test. Methods and results We developed a clinical scoring system from a cohort of 21 492 consecutive patients who underwent CCTA between February 2006 and May 2021. Coronary computed tomography angiography study results were categorized as normal, abnormal, or non-diagnostic. Multivariable logistic regression analysis was conducted to produce a model that predicted the likelihood of a non-diagnostic test. Machine learning (ML) models were utilized to validate the predictor selection and prediction performance. Both logistic regression and ML models achieved fair discriminate ability with an area under the curve of 0.630 [95% confidence interval (CI) 0.618–0.641] and 0.634 (95% CI 0.612–0.656), respectively. The presence of a cardiac implant and weight >100 kg were among the most influential predictors of a non-diagnostic study. Conclusion We developed a model that could be implemented at the ‘point-of-scheduling’ to identify patients who would be best served by another non-invasive diagnostic test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非诊断性冠状动脉CT血管造影的预筛查
【摘要】目的冠状动脉ct血管造影(CCTA)对疑似冠状动脉疾病的不加区分的转诊可能导致更高比例的模棱两可和非诊断性研究,导致下游资源利用不当或延误诊断时间。我们试图开发一种简单的临床工具来预测非诊断性CCTA的可能性,以帮助确定可能更适合使用其他测试的患者。方法和结果我们从2006年2月至2021年5月期间连续接受CCTA的21492名患者中开发了一个临床评分系统。冠状动脉ct血管造影研究结果分为正常、异常和非诊断性。进行多变量逻辑回归分析,以产生预测非诊断测试可能性的模型。使用机器学习(ML)模型来验证预测器的选择和预测性能。logistic回归和ML模型均获得了公平的区分能力,曲线下面积分别为0.630[95%置信区间(CI) 0.618-0.641]和0.634 (95% CI 0.612-0.656)。在非诊断性研究中,心脏植入物的存在和体重100公斤是最具影响力的预测因素。我们开发了一个可以在“调度点”实施的模型,以确定哪些患者最适合进行另一种非侵入性诊断测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Severe concentric hypertrophy after cardiac arrest makes support with ECPELLA® impossible. How to address the coronaries in TAVI candidates: can the need for revascularization be safely determined by CT angiography only? Feasibility validation of automatic diagnosis of mitral valve prolapse from multi-view echocardiographic sequences based on deep neural network. A tri-leaflet mitral valve with left ventricular non-compaction cardiomyopathy. CT-FFR by expanding coronary tree with Newton-Krylov-Schwarz method to solve the governing equations of CFD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1