Subhamoy Chatterjee, Andrés Muñoz-Jaramillo, Maher A. Dayeh, Hazel M. Bain, Kimberly Moreland
{"title":"Homogenizing SOHO/EIT and SDO/AIA 171 Å Images: A Deep-learning Approach","authors":"Subhamoy Chatterjee, Andrés Muñoz-Jaramillo, Maher A. Dayeh, Hazel M. Bain, Kimberly Moreland","doi":"10.3847/1538-4365/ace9d7","DOIUrl":null,"url":null,"abstract":"Abstract Extreme-ultraviolet (EUV) images of the Sun are becoming an integral part of space weather prediction tasks. However, having different surveys requires the development of instrument-specific prediction algorithms. As an alternative, it is possible to combine multiple surveys to create a homogeneous data set. In this study, we utilize the temporal overlap of Solar and Heliospheric Observatory Extreme ultraviolet Imaging Telescope and Solar Dynamics Observatory Atmospheric Imaging Assembly 171 Å surveys to train an ensemble of deep-learning models for creating a single homogeneous survey of EUV images for two solar cycles. Prior applications of deep learning have focused on validating the homogeneity of the output while overlooking the systematic estimation of uncertainty. We use an approach called “approximate Bayesian ensembling” to generate an ensemble of models whose uncertainty mimics that of a fully Bayesian neural network at a fraction of the cost. We find that ensemble uncertainty goes down as the training set size increases. Additionally, we show that the model ensemble adds immense value to the prediction by showing higher uncertainty in test data that are not well represented in the training data.","PeriodicalId":8588,"journal":{"name":"Astrophysical Journal Supplement Series","volume":"15 1","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ace9d7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Extreme-ultraviolet (EUV) images of the Sun are becoming an integral part of space weather prediction tasks. However, having different surveys requires the development of instrument-specific prediction algorithms. As an alternative, it is possible to combine multiple surveys to create a homogeneous data set. In this study, we utilize the temporal overlap of Solar and Heliospheric Observatory Extreme ultraviolet Imaging Telescope and Solar Dynamics Observatory Atmospheric Imaging Assembly 171 Å surveys to train an ensemble of deep-learning models for creating a single homogeneous survey of EUV images for two solar cycles. Prior applications of deep learning have focused on validating the homogeneity of the output while overlooking the systematic estimation of uncertainty. We use an approach called “approximate Bayesian ensembling” to generate an ensemble of models whose uncertainty mimics that of a fully Bayesian neural network at a fraction of the cost. We find that ensemble uncertainty goes down as the training set size increases. Additionally, we show that the model ensemble adds immense value to the prediction by showing higher uncertainty in test data that are not well represented in the training data.
期刊介绍:
The Astrophysical Journal Supplement (ApJS) serves as an open-access journal that publishes significant articles featuring extensive data or calculations in the field of astrophysics. It also facilitates Special Issues, presenting thematically related papers simultaneously in a single volume.