Yuyang Zhou, Shanshan He, Xutao Wang, Peiyu Wang, Yanyan Chen, Ming Luo
{"title":"Optimization of Heterogeneous Passenger Subway Transfer Timetable Considering Social Equity","authors":"Yuyang Zhou, Shanshan He, Xutao Wang, Peiyu Wang, Yanyan Chen, Ming Luo","doi":"10.1007/s40864-023-00198-x","DOIUrl":null,"url":null,"abstract":"Abstract With the accelerated operation of subway networks, the increasing number of subway transfer stations results in inefficient passenger travel. The target of this paper is to solve the research question of how to reduce transfer waiting time (TWTT) for heterogeneous passengers. The key problem is to determine the optimal concerted train timetable considering the transfer walking time (TWKT) of the passengers. On the basis of field survey data, the regression method was used to establish a TWKT prediction model for general passengers (G) and vulnerable passengers (V), including the elderly, passengers traveling with children, and those carrying large luggage. Afterward, a two-objective integer programming model was formulated to minimize the subway operating costs and TWTT for each group, in which V is given the priority weight to ensure social equity. The headway, loading capacity, and TWKT of heterogeneous passengers were set as optimization model constraints. A genetic algorithm (GA) was designed to find the optimal solution. A case study in which the Beijing Jianguomen Station was selected as the key transfer station was conducted to verify the performance of the proposed model. Key results show that the total TWTT for V and G can be reduced by 18.6% and 27.2%, respectively, with one train saved. Results of the parameter sensitivity analysis reveal the interconnection between the operating cost, heterogeneous passenger proportion, and transfer time. The proposed model can be used for improving transfer efficiency for passengers while considering the enterprise operating costs.","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Rail Transit","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40864-023-00198-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the accelerated operation of subway networks, the increasing number of subway transfer stations results in inefficient passenger travel. The target of this paper is to solve the research question of how to reduce transfer waiting time (TWTT) for heterogeneous passengers. The key problem is to determine the optimal concerted train timetable considering the transfer walking time (TWKT) of the passengers. On the basis of field survey data, the regression method was used to establish a TWKT prediction model for general passengers (G) and vulnerable passengers (V), including the elderly, passengers traveling with children, and those carrying large luggage. Afterward, a two-objective integer programming model was formulated to minimize the subway operating costs and TWTT for each group, in which V is given the priority weight to ensure social equity. The headway, loading capacity, and TWKT of heterogeneous passengers were set as optimization model constraints. A genetic algorithm (GA) was designed to find the optimal solution. A case study in which the Beijing Jianguomen Station was selected as the key transfer station was conducted to verify the performance of the proposed model. Key results show that the total TWTT for V and G can be reduced by 18.6% and 27.2%, respectively, with one train saved. Results of the parameter sensitivity analysis reveal the interconnection between the operating cost, heterogeneous passenger proportion, and transfer time. The proposed model can be used for improving transfer efficiency for passengers while considering the enterprise operating costs.
期刊介绍:
Urban Rail Transit is a peer-reviewed, international, interdisciplinary and open-access journal published under the SpringerOpen brand that provides a platform for scientists, researchers and engineers of urban rail transit to publish their original, significant articles on topics in urban rail transportation operation and management, design and planning, civil engineering, equipment and systems and other related topics to urban rail transit. It is to promote the academic discussions and technical exchanges among peers in the field. The journal also reports important news on the development and operating experience of urban rail transit and related government policies, laws, guidelines, and regulations. It could serve as an important reference for decision¬makers and technologists in urban rail research and construction field.
Specific topics cover:
Column I: Urban Rail Transportation Operation and Management
• urban rail transit flow theory, operation, planning, control and management
• traffic and transport safety
• traffic polices and economics
• urban rail management
• traffic information management
• urban rail scheduling
• train scheduling and management
• strategies of ticket price
• traffic information engineering & control
• intelligent transportation system (ITS) and information technology
• economics, finance, business & industry
• train operation, control
• transport Industries
• transportation engineering
Column II: Urban Rail Transportation Design and Planning
• urban rail planning
• pedestrian studies
• sustainable transport engineering
• rail electrification
• rail signaling and communication
• Intelligent & Automated Transport System Technology ?
• rolling stock design theory and structural reliability
• urban rail transit electrification and automation technologies
• transport Industries
• transportation engineering
Column III: Civil Engineering
• civil engineering technologies
• maintenance of rail infrastructure
• transportation infrastructure systems
• roads, bridges, tunnels, and underground engineering ?
• subgrade and pavement maintenance and performance
Column IV: Equipments and Systems
• mechanical-electronic technologies
• manufacturing engineering
• inspection for trains and rail
• vehicle-track coupling system dynamics, simulation and control
• superconductivity and levitation technology
• magnetic suspension and evacuated tube transport
• railway technology & engineering
• Railway Transport Industries
• transport & vehicle engineering
Column V: other topics of interest
• modern tram
• interdisciplinary transportation research
• environmental impacts such as vibration, noise and pollution
Article types:
• Papers. Reports of original research work.
• Design notes. Brief contributions on current design, development and application work; not normally more than 2500 words (3 journal pages), including descriptions of apparatus or techniques developed for a specific purpose, important experimental or theoretical points and novel technical solutions to commonly encountered problems.
• Rapid communications. Brief, urgent announcements of significant advances or preliminary accounts of new work, not more than 3500 words (4 journal pages). The most important criteria for acceptance of a rapid communication are novel and significant. For these articles authors must state briefly, in a covering letter, exactly why their works merit rapid publication.
• Review articles. These are intended to summarize accepted practice and report on recent progress in selected areas. Such articles are generally commissioned from experts in various field s by the Editorial Board, but others wishing to write a review article may submit an outline for preliminary consideration.