Pub Date : 2024-09-03DOI: 10.1007/s40864-024-00225-5
Qinglun Zhong, Ruihua Xu
When no more than one train is feasibly contained in the separation headway times of two other trains, a triangular gap problem-based method is used to compute the consumed capacity in linear time. This is a strong condition limiting its applicability, while real-world operations often feature mixed traffic of various speeds, creating more complex structures beyond the characterization of a triangular gap. In this paper, we attempt to investigate the multi-train gap scenario and provide a general solution to the railway timetable structure and capacity analysis problem. Given a timetable, we use an incidence graph, the so-called train contraction minor, for representing the consecutive train operations and show that a longest path for spanning the compressed timetable is any path in a graph induced by some topological subsequence of trains that connects the predefined vertices in the train contraction minor. By vector-valued vertex labeling of this minor, we acquire an efficient algorithm that computes the consumed capacity of the timetable. Our algorithm runs in O(mn) time, where m and n are the number of trains and stations, respectively, and is free from the limitation and outperforms the near-linear time policy iteration implementation in the max-plus system of train operations. A toy example and a real-world case study demonstrate the effectiveness and computational performance of the proposed method. The proposed method based on train contraction minor contributes to the railway operations community by promoting the efficient computation of railway line capacity into linear time.
当两列其他列车的间隔时间不超过一列列车时,就会使用基于三角形间隙问题的方法,在线性时间内计算消耗的运力。这是限制其适用性的一个重要条件,而现实世界中的运营往往以各种速度的混合交通为特征,从而产生超出三角形间隙特征的更复杂结构。在本文中,我们试图研究多列车间隙的情况,并为铁路时刻表结构和运力分析问题提供一个通用解决方案。给定一个时刻表,我们使用一个入射图,即所谓的列车收缩小图,来表示连续的列车运行,并证明跨越压缩时刻表的最长路径是由列车的某个拓扑子序列所诱导的图中的任意路径,该路径连接列车收缩小图中预定义的顶点。通过对该次要顶点进行向量值标注,我们获得了一种计算时刻表消耗容量的高效算法。我们的算法运行时间为 O(mn),其中 m 和 n 分别为列车数和车站数,并且不受时间限制,优于列车运行最大加法系统中的近线性时间策略迭代实现。一个玩具实例和一个实际案例研究证明了所提方法的有效性和计算性能。所提出的基于列车收缩次要性的方法促进了铁路线能力在线性时间内的高效计算,为铁路运营界做出了贡献。
{"title":"Linear Time Train Contraction Minor Labeling for Railway Line Capacity Analysis","authors":"Qinglun Zhong, Ruihua Xu","doi":"10.1007/s40864-024-00225-5","DOIUrl":"https://doi.org/10.1007/s40864-024-00225-5","url":null,"abstract":"<p>When no more than one train is feasibly contained in the separation headway times of two other trains, a triangular gap problem-based method is used to compute the consumed capacity in linear time. This is a strong condition limiting its applicability, while real-world operations often feature mixed traffic of various speeds, creating more complex structures beyond the characterization of a triangular gap. In this paper, we attempt to investigate the multi-train gap scenario and provide a general solution to the railway timetable structure and capacity analysis problem. Given a timetable, we use an incidence graph, the so-called train contraction minor, for representing the consecutive train operations and show that a longest path for spanning the compressed timetable is any path in a graph induced by some topological subsequence of trains that connects the predefined vertices in the train contraction minor. By vector-valued vertex labeling of this minor, we acquire an efficient algorithm that computes the consumed capacity of the timetable. Our algorithm runs in <i>O</i>(<i>mn</i>) time, where <i>m</i> and <i>n</i> are the number of trains and stations, respectively, and is free from the limitation and outperforms the near-linear time policy iteration implementation in the max-plus system of train operations. A toy example and a real-world case study demonstrate the effectiveness and computational performance of the proposed method. The proposed method based on train contraction minor contributes to the railway operations community by promoting the efficient computation of railway line capacity into linear time.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03DOI: 10.1007/s40864-024-00230-8
Dick Sang Hoo, Kein Huat Chua, Yun Seng Lim, Li Wang, N. Rajasekar
Harmonic distortions in DC third rail systems can cause overheating of electric motors and transformers. Single-tuned filters and shunt active harmonic filters (SAHFs) are often used to mitigate the harmonic distortions. However, there is a lack of studies on the effects of train dynamics on harmonic distortions. This paper aims to investigate the influence of dynamic train behaviors for a DC third rail system and provide recommendations for the design of single-tuned filters and SAHFs to mitigate the harmonic distortions. The traction power supply system of a DC third rail system in Malaysia is modeled using ETAP-eTraX and MATLAB-Simulink software for the investigation. The ETAP-eTraX software is used to accurately compute the dynamic behavior of the train, while MATLAB-Simulink allows for the assessment of the impact of train behavior on the rail track, as well as the harmonic effect of the railway power network on the train. The findings showed that the SAHF exhibits strong adaptability and superior filtering performance compared to the single-tuned filter in addressing dynamic harmonic distortion in traction power supply systems. This study emphasizes the significance of incorporating harmonic mitigation devices, particularly for managing dynamic harmonic distortion based on actual train consumption patterns.
{"title":"Dynamic Harmonic Distortion Analysis and Mitigation Strategies for DC Third Rail Systems","authors":"Dick Sang Hoo, Kein Huat Chua, Yun Seng Lim, Li Wang, N. Rajasekar","doi":"10.1007/s40864-024-00230-8","DOIUrl":"https://doi.org/10.1007/s40864-024-00230-8","url":null,"abstract":"<p>Harmonic distortions in DC third rail systems can cause overheating of electric motors and transformers. Single-tuned filters and shunt active harmonic filters (SAHFs) are often used to mitigate the harmonic distortions. However, there is a lack of studies on the effects of train dynamics on harmonic distortions. This paper aims to investigate the influence of dynamic train behaviors for a DC third rail system and provide recommendations for the design of single-tuned filters and SAHFs to mitigate the harmonic distortions. The traction power supply system of a DC third rail system in Malaysia is modeled using ETAP-eTraX and MATLAB-Simulink software for the investigation. The ETAP-eTraX software is used to accurately compute the dynamic behavior of the train, while MATLAB-Simulink allows for the assessment of the impact of train behavior on the rail track, as well as the harmonic effect of the railway power network on the train. The findings showed that the SAHF exhibits strong adaptability and superior filtering performance compared to the single-tuned filter in addressing dynamic harmonic distortion in traction power supply systems. This study emphasizes the significance of incorporating harmonic mitigation devices, particularly for managing dynamic harmonic distortion based on actual train consumption patterns.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1007/s40864-024-00229-1
Tianyue Wan, Wei Lu, Xiaodong Na
In response to the global trend of urbanization, there has been an increasing focus on transit-oriented development (TOD). However, the prioritization of economic factors in the establishment of TOD often takes precedence over concerns for social equity. This research seeks to address this gap by examining the economic performance and demographic characteristics of 46 rail transit station areas (RSAs) in the city center of Dalian. The study employs the Gini coefficient and affinity clustering to assess the overall economic performance and inequality among different resident groups within RSAs. Furthermore, regression analysis is utilized to identify the key variables influencing economic performance equity in these areas. The results indicate significant disparities in economic dimensions among different resident groups, with station areas in commercial centers and functional core zones demonstrating higher economic performance. Housing prices and job–housing density are identified as crucial factors influencing consumer behavior across various station areas. Despite the presence of employment opportunities and urban development features in RSAs, differences in socioeconomic status and accessibility to public facilities significantly impact resident social equity. These results can assist policymakers in evaluating disparities in the allocation of RSAs among different regions and demographic groups. This study adds to the existing knowledge on equity in the economic performance of RSAs and supports the development of inclusive TOD strategies specific to different locations and populations.
为顺应全球城市化趋势,人们越来越重视以公交为导向的发展(TOD)。然而,在建立 TOD 的过程中,经济因素往往优先于对社会公平的关注。本研究试图通过考察大连市中心 46 个轨道交通站点区域(RSA)的经济表现和人口特征来弥补这一差距。研究采用基尼系数和亲和聚类来评估轨道交通站点区域的整体经济表现和不同居民群体之间的不平等。此外,研究还利用回归分析来确定影响这些地区经济表现公平性的关键变量。结果表明,不同居民群体之间在经济层面存在显著差异,商业中心和功能核心区的车站地区经济表现较好。房价和职住密度被认为是影响各站区消费行为的关键因素。尽管车站区存在就业机会和城市发展特征,但社会经济地位和公共设施可达性的差异极大地影响了居民的社会公平性。这些结果有助于政策制定者评估不同地区和人口群体之间的区域空间分配差异。这项研究补充了现有的关于区域自治区域经济表现公平性的知识,并支持针对不同地区和人口制定包容性的 TOD 战略。
{"title":"Quantifying the Social Equity of Economic Performance for Different Groups of Residents in Rail Transit Station Areas","authors":"Tianyue Wan, Wei Lu, Xiaodong Na","doi":"10.1007/s40864-024-00229-1","DOIUrl":"https://doi.org/10.1007/s40864-024-00229-1","url":null,"abstract":"<p>In response to the global trend of urbanization, there has been an increasing focus on transit-oriented development (TOD). However, the prioritization of economic factors in the establishment of TOD often takes precedence over concerns for social equity. This research seeks to address this gap by examining the economic performance and demographic characteristics of 46 rail transit station areas (RSAs) in the city center of Dalian. The study employs the Gini coefficient and affinity clustering to assess the overall economic performance and inequality among different resident groups within RSAs. Furthermore, regression analysis is utilized to identify the key variables influencing economic performance equity in these areas. The results indicate significant disparities in economic dimensions among different resident groups, with station areas in commercial centers and functional core zones demonstrating higher economic performance. Housing prices and job–housing density are identified as crucial factors influencing consumer behavior across various station areas. Despite the presence of employment opportunities and urban development features in RSAs, differences in socioeconomic status and accessibility to public facilities significantly impact resident social equity. These results can assist policymakers in evaluating disparities in the allocation of RSAs among different regions and demographic groups. This study adds to the existing knowledge on equity in the economic performance of RSAs and supports the development of inclusive TOD strategies specific to different locations and populations.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142180926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1007/s40864-024-00228-2
Linyan Wang, Haishan Xia
The transit-oriented development (TOD) concept has become a significant catalyst for urban development in China, which has undergone rapid urbanization and has actively participated in the development of public transportation networks over the past 20 years. TOD not only guides the transformation of transportation modes but also leads the development of urban spaces. The extensive construction of urban rail transit in China highlights the universal patterns of TOD and reflects the uniqueness of Chinese practices. This paper analyzes the characteristics of urban development and TOD in developed countries, summarizing the common laws driving TOD in theoretical research. It then compares China, which is in a period of rapid rail transit construction, to identify the unique developmental laws of transit-oriented development of rail transit in China (TOD-RTC). The paper further examines the developmental characteristics of TOD-RTC in practice, considering both temporal and spatial aspects, and explores the reasons behind the formation of individual differences in TOD-RTC. Finally, it discusses the new value and potential that TOD brings to urban development, along with predicting future development trends.
过去 20 年来,中国经历了快速的城市化进程,并积极参与公共交通网络的发展,以公交为导向的发展(TOD)理念已成为中国城市发展的重要催化剂。TOD 不仅引导了交通方式的转变,也引领了城市空间的发展。中国城市轨道交通的广泛建设凸显了 TOD 的普遍规律,也体现了中国实践的独特性。本文分析了发达国家城市发展和 TOD 的特点,总结了理论研究中推动 TOD 的共同规律。然后对比正处于轨道交通快速建设时期的中国,找出中国轨道交通以公交为导向的发展(TOD-RTC)的独特发展规律。本文进一步从时间和空间两个方面考察了 TOD-RTC 在实践中的发展特点,并探讨了 TOD-RTC 个体差异形成的原因。最后,本文探讨了 TOD 为城市发展带来的新价值和新潜力,并预测了未来的发展趋势。
{"title":"A Comprehensive Review of the Development Characteristics and Future Trends of TOD in Chinese Urban Rail Transit","authors":"Linyan Wang, Haishan Xia","doi":"10.1007/s40864-024-00228-2","DOIUrl":"https://doi.org/10.1007/s40864-024-00228-2","url":null,"abstract":"<p>The transit-oriented development (TOD) concept has become a significant catalyst for urban development in China, which has undergone rapid urbanization and has actively participated in the development of public transportation networks over the past 20 years. TOD not only guides the transformation of transportation modes but also leads the development of urban spaces. The extensive construction of urban rail transit in China highlights the universal patterns of TOD and reflects the uniqueness of Chinese practices. This paper analyzes the characteristics of urban development and TOD in developed countries, summarizing the common laws driving TOD in theoretical research. It then compares China, which is in a period of rapid rail transit construction, to identify the unique developmental laws of transit-oriented development of rail transit in China (TOD-RTC). The paper further examines the developmental characteristics of TOD-RTC in practice, considering both temporal and spatial aspects, and explores the reasons behind the formation of individual differences in TOD-RTC. Finally, it discusses the new value and potential that TOD brings to urban development, along with predicting future development trends.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1007/s40864-024-00227-3
Xiaofeng Yang, Miao Wang, Trillion Q. Zheng, Xiangxuan Sun
With the rapid development of urban rail transit, the issue of stray current due to incomplete insulation between the rail and the earth is attracting increasing attention. Stray current seriously affects the safe operation of urban rail transit, pipelines and power grids, and pose challenges to the development of urban energy security. However, there are significant differences among the various methods for the analysis and verification of stray currents, and existing research works thus lack a mature theoretical framework. To address this, this paper presents an in-depth review on the study of stray current including the mechanism, technical standards, modelling, simulation and mitigation technologies. Firstly, the principle and standards of stray current are introduced from multiple perspectives (i.e. metro side, pipeline side and grid side). Then, the typical modelling and simulation of stray current are summarized and compared in detail. The representative stray current mitigation measures, together with the stray current hardware simulation technologies, are also discussed. In conclusion, this paper provides a comprehensive overview of key technologies involved in the modelling and simulation of stray current, and highlights the valuable research direction in stray current mitigation.
{"title":"Modelling and Simulation of Stray Current in Urban Rail Transit—A Review","authors":"Xiaofeng Yang, Miao Wang, Trillion Q. Zheng, Xiangxuan Sun","doi":"10.1007/s40864-024-00227-3","DOIUrl":"https://doi.org/10.1007/s40864-024-00227-3","url":null,"abstract":"<p>With the rapid development of urban rail transit, the issue of stray current due to incomplete insulation between the rail and the earth is attracting increasing attention. Stray current seriously affects the safe operation of urban rail transit, pipelines and power grids, and pose challenges to the development of urban energy security. However, there are significant differences among the various methods for the analysis and verification of stray currents, and existing research works thus lack a mature theoretical framework. To address this, this paper presents an in-depth review on the study of stray current including the mechanism, technical standards, modelling, simulation and mitigation technologies. Firstly, the principle and standards of stray current are introduced from multiple perspectives (i.e. metro side, pipeline side and grid side). Then, the typical modelling and simulation of stray current are summarized and compared in detail. The representative stray current mitigation measures, together with the stray current hardware simulation technologies, are also discussed. In conclusion, this paper provides a comprehensive overview of key technologies involved in the modelling and simulation of stray current, and highlights the valuable research direction in stray current mitigation.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s40864-024-00224-6
Zijia Wang, Rui Guo, Linmu Zou, Tie Li, Xiangming Yao
A comprehensive understanding of the multifaceted ramifications of the coronavirus disease 2019 (COVID-19) on transit ridership is imperative for the optimization of judicious traffic management policies. The intricate influences of this pandemic exhibit a high degree of complexity, dynamically evolving across spatial and temporal dimensions. At present, a nuanced understanding remains elusive regarding whether disparate influencing factors govern inbound and outbound passenger flows. This study propels the discourse forward by introducing a methodological synthesis that integrates time series anomaly detection, impact inference, and spatiotemporal analysis. This amalgamation establishes an analytical framework instrumental in elucidating the spatiotemporal heterogeneity intrinsic to individual impact events, grounded in extensive time series data. The resulting framework facilitates a nuanced delineation, affording a more precise extraction of the COVID-19 impact on subway ridership. Empirical findings derived from the daily trip data of the Beijing subway in 2020 substantiate the existence of conspicuous spatiotemporal variability in the determinants influencing relative shifts in inbound and outbound ridership. Notably, stations situated in high-risk areas manifest a conspicuous absence of correlation with outbound trips, exhibiting a discernibly negative impact solely on inbound trips. Conversely, stations servicing residential and enterprise locales demonstrate resilience, evincing an absence of significant perturbation induced by the outbreak.
{"title":"Impact Evaluation of COVID-19 on Transit Ridership: A Case Study of the Beijing Subway","authors":"Zijia Wang, Rui Guo, Linmu Zou, Tie Li, Xiangming Yao","doi":"10.1007/s40864-024-00224-6","DOIUrl":"https://doi.org/10.1007/s40864-024-00224-6","url":null,"abstract":"<p>A comprehensive understanding of the multifaceted ramifications of the coronavirus disease 2019 (COVID-19) on transit ridership is imperative for the optimization of judicious traffic management policies. The intricate influences of this pandemic exhibit a high degree of complexity, dynamically evolving across spatial and temporal dimensions. At present, a nuanced understanding remains elusive regarding whether disparate influencing factors govern inbound and outbound passenger flows. This study propels the discourse forward by introducing a methodological synthesis that integrates time series anomaly detection, impact inference, and spatiotemporal analysis. This amalgamation establishes an analytical framework instrumental in elucidating the spatiotemporal heterogeneity intrinsic to individual impact events, grounded in extensive time series data. The resulting framework facilitates a nuanced delineation, affording a more precise extraction of the COVID-19 impact on subway ridership. Empirical findings derived from the daily trip data of the Beijing subway in 2020 substantiate the existence of conspicuous spatiotemporal variability in the determinants influencing relative shifts in inbound and outbound ridership. Notably, stations situated in high-risk areas manifest a conspicuous absence of correlation with outbound trips, exhibiting a discernibly negative impact solely on inbound trips. Conversely, stations servicing residential and enterprise locales demonstrate resilience, evincing an absence of significant perturbation induced by the outbreak.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s40864-024-00213-9
Xiaohan Xu, Amer Shalaby, Qian Feng, Ailing Huang
Time reliability (TR) is a critical factor that affects the efficiency and service quality of the urban rail transit network (URTN). However, previous studies have not incorporated TR into the evaluation of URTN station importance, focusing instead on basic centrality measures. Therefore, this paper proposes a new metric of station-based TR for evaluating and ranking URTN station importance. The new metric in combination with traditional centrality measures was used by the weighted Technique for Order of Preference by Similarity to Ideal Solution (weighted TOPSIS) to identify the combined significance level of individual URTN station importance and rank them accordingly. To investigate the performance of this method, we exploit deliberate attacks on the top-ranked stations through different methods. A case study of Beijing’s URTN during the morning peak hour showed that the proposed method is generally a better indicator for identifying station importance in maintaining network connectivity. The case study also demonstrated the feasibility and validity of the model. This study can provide recommendations for the planning and operation of rail transit systems and can inform the effective design of station protection strategies.
{"title":"Identifying Station Importance in Urban Rail Transit Networks Using a Combination of Centrality and Time Reliability Measures: A Case Study in Beijing, China","authors":"Xiaohan Xu, Amer Shalaby, Qian Feng, Ailing Huang","doi":"10.1007/s40864-024-00213-9","DOIUrl":"https://doi.org/10.1007/s40864-024-00213-9","url":null,"abstract":"<p>Time reliability (TR) is a critical factor that affects the efficiency and service quality of the urban rail transit network (URTN). However, previous studies have not incorporated TR into the evaluation of URTN station importance, focusing instead on basic centrality measures. Therefore, this paper proposes a new metric of station-based TR for evaluating and ranking URTN station importance. The new metric in combination with traditional centrality measures was used by the weighted Technique for Order of Preference by Similarity to Ideal Solution (weighted TOPSIS) to identify the combined significance level of individual URTN station importance and rank them accordingly. To investigate the performance of this method, we exploit deliberate attacks on the top-ranked stations through different methods. A case study of Beijing’s URTN during the morning peak hour showed that the proposed method is generally a better indicator for identifying station importance in maintaining network connectivity. The case study also demonstrated the feasibility and validity of the model. This study can provide recommendations for the planning and operation of rail transit systems and can inform the effective design of station protection strategies.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-23DOI: 10.1007/s40864-024-00223-7
Zhihong Zhong, Jiayu Mi, Yajie Zhao, Zhongping Yang, Fei Lin
{"title":"Coordinated Control of the Onboard and Wayside Energy Storage System of an Urban Rail Train Based on Rule Mining","authors":"Zhihong Zhong, Jiayu Mi, Yajie Zhao, Zhongping Yang, Fei Lin","doi":"10.1007/s40864-024-00223-7","DOIUrl":"https://doi.org/10.1007/s40864-024-00223-7","url":null,"abstract":"","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141103491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1007/s40864-023-00208-y
Xiangyang Cui, Zhaoping Li, Huafei He, Teng Liu, Jiahao Wang
Traditional support structures cannot meet the complex conditions of different excavation depths and areas in underground transportation hubs. On the basis of fully considering the spatial position relationship of foundation pit groups, this article proposes a multilevel retaining system that meets the requirements of multilevel foundation pit excavation. The evolution law of the support structure during the excavation process of the inner pit was explored using on-site monitoring and numerical simulation methods. The results indicate that the excavation of the inner pit reduces the passive earth pressure, and the deformation of the outer support structure can be effectively suppressed by setting a retaining structure or a bottom slab in the bench zone. The excavation of the inner pit causes significant vertical deformation of the support structure adjacent to the foundation pit, while the impact on the structure far away from the foundation pit is relatively small. According to the contact force chain and soil pressure between the two rows of support structure, the soil in this area is divided into a “relaxation zone” and a “compression zone.” The evolution mechanism of earth pressure in the case of mutual-effect failure between two rows of piles is revealed. This paper addresses the deformation properties of multilevel support structures as well as the mechanism of earth pressure evolution between structures.
{"title":"Observed Characterization of Multi‑level Retaining Structure for Deep Excavation of Subway Station","authors":"Xiangyang Cui, Zhaoping Li, Huafei He, Teng Liu, Jiahao Wang","doi":"10.1007/s40864-023-00208-y","DOIUrl":"https://doi.org/10.1007/s40864-023-00208-y","url":null,"abstract":"<p>Traditional support structures cannot meet the complex conditions of different excavation depths and areas in underground transportation hubs. On the basis of fully considering the spatial position relationship of foundation pit groups, this article proposes a multilevel retaining system that meets the requirements of multilevel foundation pit excavation. The evolution law of the support structure during the excavation process of the inner pit was explored using on-site monitoring and numerical simulation methods. The results indicate that the excavation of the inner pit reduces the passive earth pressure, and the deformation of the outer support structure can be effectively suppressed by setting a retaining structure or a bottom slab in the bench zone. The excavation of the inner pit causes significant vertical deformation of the support structure adjacent to the foundation pit, while the impact on the structure far away from the foundation pit is relatively small. According to the contact force chain and soil pressure between the two rows of support structure, the soil in this area is divided into a “relaxation zone” and a “compression zone.” The evolution mechanism of earth pressure in the case of mutual-effect failure between two rows of piles is revealed. This paper addresses the deformation properties of multilevel support structures as well as the mechanism of earth pressure evolution between structures.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141059860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s40864-024-00220-w
Anil Kumar Chhotu, Sanjeev Kumar Suman
With the tremendous increase in the number of vehicles, the dense traffic created can lead to accidents and fatalities. In a traffic system, the costs for accidents are immeasurable. Numerous studies have been carried out to predict the cost of fatal accidents but have provided the actual values. Therefore, in this study, a monkey-based modular neural system (MbMNS) is developed to identify accident cost. The accident cases and cost data were collected and preprocessed to remove the noise, and the required features were extracted using the spider monkey function. Based on the extracted features, the accidents and the costs were identified. For rail engineering, this will support evaluating the number of railroad crossing accidents with different time intervals. The impact of every accident was also measured with different cost analysis constraints, including insurance, medical, and legal and administrative costs. Therefore, the present study contributes to the field by collecting and organizing the present railroad level crossing accident data from crossing inventory dashboards. Then, the introduction of a novel MbMNS for the cost analysis is the primary contribution of this study to further enrich the railroad level crossing protection system. The third contribution is the tuning of the prediction layer of a modular neural network to the desired level to achieve the highest predictive exactness score. Hence, the designed MbMNS was tested in the Python environment, and the results were validated with regard to recall, accuracy, F-measure, precision, and error values; a comparative analysis was also conducted to confirm the improvement. The novel MbMNS recorded high accuracy of 96.29% for accident and cost analysis, which is better than that reported for other traditional methods.
{"title":"Cost Analysis and Prediction of Railroad Level Crossing Accidents for Indian Railways","authors":"Anil Kumar Chhotu, Sanjeev Kumar Suman","doi":"10.1007/s40864-024-00220-w","DOIUrl":"https://doi.org/10.1007/s40864-024-00220-w","url":null,"abstract":"<p>With the tremendous increase in the number of vehicles, the dense traffic created can lead to accidents and fatalities. In a traffic system, the costs for accidents are immeasurable. Numerous studies have been carried out to predict the cost of fatal accidents but have provided the actual values. Therefore, in this study, a monkey-based modular neural system (MbMNS) is developed to identify accident cost. The accident cases and cost data were collected and preprocessed to remove the noise, and the required features were extracted using the spider monkey function. Based on the extracted features, the accidents and the costs were identified. For rail engineering, this will support evaluating the number of railroad crossing accidents with different time intervals. The impact of every accident was also measured with different cost analysis constraints, including insurance, medical, and legal and administrative costs. Therefore, the present study contributes to the field by collecting and organizing the present railroad level crossing accident data from crossing inventory dashboards. Then, the introduction of a novel MbMNS for the cost analysis is the primary contribution of this study to further enrich the railroad level crossing protection system. The third contribution is the tuning of the prediction layer of a modular neural network to the desired level to achieve the highest predictive exactness score. Hence, the designed MbMNS was tested in the Python environment, and the results were validated with regard to recall, accuracy, <i>F</i>-measure, precision, and error values; a comparative analysis was also conducted to confirm the improvement. The novel MbMNS recorded high accuracy of 96.29% for accident and cost analysis, which is better than that reported for other traditional methods.</p>","PeriodicalId":44861,"journal":{"name":"Urban Rail Transit","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140887247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}