{"title":"A novel finite element approximation of anisotropic curve shortening flow","authors":"Klaus Deckelnick, Robert Nürnberg","doi":"10.4171/ifb/500","DOIUrl":null,"url":null,"abstract":"We extend the DeTurck trick from the classical isotropic curve shortening flow to the anisotropic setting. Here, the anisotropic energy density is allowed to depend on space, which allows an interpretation in the context of Finsler metrics, giving rise to, for instance, geodesic curvature flow in Riemannian manifolds. Assuming that the density is strictly convex and smooth, we introduce a novel weak formulation for anisotropic curve shortening flow. We then derive an optimal $H^1$-error bound for a continuous-in-time semidiscrete finite element approximation that uses piecewise linear elements. In addition, we consider some fully practical fully discrete schemes and prove their unconditional stability. Finally, we present several numerical simulations, including some convergence experiments that confirm the derived error bound, as well as applications to crystalline curvature flow and geodesic curvature flow.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ifb/500","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
We extend the DeTurck trick from the classical isotropic curve shortening flow to the anisotropic setting. Here, the anisotropic energy density is allowed to depend on space, which allows an interpretation in the context of Finsler metrics, giving rise to, for instance, geodesic curvature flow in Riemannian manifolds. Assuming that the density is strictly convex and smooth, we introduce a novel weak formulation for anisotropic curve shortening flow. We then derive an optimal $H^1$-error bound for a continuous-in-time semidiscrete finite element approximation that uses piecewise linear elements. In addition, we consider some fully practical fully discrete schemes and prove their unconditional stability. Finally, we present several numerical simulations, including some convergence experiments that confirm the derived error bound, as well as applications to crystalline curvature flow and geodesic curvature flow.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.