{"title":"Sliding mode controller design via delay-dependent $$H_{\\infty }$$ stabilization criterion for load frequency regulation","authors":"Subrat Kumar Pradhan, Dushmanta Kumar Das","doi":"10.1186/s41601-023-00322-w","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a control approach based on sliding-mode-control (SMC) to design robust $$H_{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>∞</mml:mi> </mml:msub> </mml:math> state feedback controllers for load frequency regulation of delayed interconnected power system (IPS) with parametric uncertainties. Considering both state feedback control strategy and delayed feedback control strategy, two SMC laws are proposed. The proposed control laws are designed to improve the stability and disturbance rejection performance of delayed IPS, while stabilization criteria in the form of linear matrix inequality are derived by choosing a Lyapunov–Krasovskii functional. An artificial time-delay is incorporated in the control law design of the delayed feedback control structure to enhance the controller performance. A numerical example is considered to study the control performance of the proposed controllers and simulation results are provided to observe the dynamic response of the IPS.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"210 1","pages":"0"},"PeriodicalIF":8.7000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection and Control of Modern Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41601-023-00322-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This work presents a control approach based on sliding-mode-control (SMC) to design robust $$H_{\infty }$$ H∞ state feedback controllers for load frequency regulation of delayed interconnected power system (IPS) with parametric uncertainties. Considering both state feedback control strategy and delayed feedback control strategy, two SMC laws are proposed. The proposed control laws are designed to improve the stability and disturbance rejection performance of delayed IPS, while stabilization criteria in the form of linear matrix inequality are derived by choosing a Lyapunov–Krasovskii functional. An artificial time-delay is incorporated in the control law design of the delayed feedback control structure to enhance the controller performance. A numerical example is considered to study the control performance of the proposed controllers and simulation results are provided to observe the dynamic response of the IPS.
期刊介绍:
Protection and Control of Modern Power Systems (PCMP) is the first international modern power system protection and control journal originated in China. The journal is dedicated to presenting top-level academic achievements in this field and aims to provide a platform for international researchers and engineers, with a special focus on authors from China, to maximize the papers' impact worldwide and contribute to the development of the power industry. PCMP is sponsored by Xuchang Ketop Electrical Research Institute and is edited and published by Power System Protection and Control Press.
PCMP focuses on advanced views, techniques, methodologies, and experience in the field of protection and control of modern power systems to showcase the latest technological achievements. However, it is important to note that the journal will cease to be published by SpringerOpen as of 31 December 2023. Nonetheless, it will continue in cooperation with a new publisher.