Flexible tactile sensor with an embedded-hair-in-elastomer structure for normal and shear stress sensing

Soft science Pub Date : 2023-10-07 DOI:10.20517/ss.2023.22
Yudong Cao, Jiacheng Li, Zihao Dong, Tianyu Sheng, Deyuan Zhang, Jun Cai, Yonggang Jiang
{"title":"Flexible tactile sensor with an embedded-hair-in-elastomer structure for normal and shear stress sensing","authors":"Yudong Cao, Jiacheng Li, Zihao Dong, Tianyu Sheng, Deyuan Zhang, Jun Cai, Yonggang Jiang","doi":"10.20517/ss.2023.22","DOIUrl":null,"url":null,"abstract":"Endowing robots with multi-directional tactile sensing capabilities has long been a challenging task in the field of flexible electronics and intelligent robots. This paper reports a highly sensitive, flexible tactile sensor with an embedded-hair-in-elastomer structure, which is capable of decoupling normal stress and shear stress. The flexible tactile sensor is fabricated on a thin polyimide substrate and consists of four self-bending piezoresistive cantilevers in a cross-shaped configuration, which are embedded in an elastomer. The sensor can decouple the tactile information into a normal stress and a shear stress with simple summation and differencing algorithms, and the measurement error is kept within 3%. Moreover, the sensitivity and detection threshold of the sensor can be adjusted by simply changing the elastic material. As a demonstration, the flexible tactile sensor is integrated into a robotic manipulator to precisely estimate the weight of the grasped objects, which shows great potential for application in robotic systems.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endowing robots with multi-directional tactile sensing capabilities has long been a challenging task in the field of flexible electronics and intelligent robots. This paper reports a highly sensitive, flexible tactile sensor with an embedded-hair-in-elastomer structure, which is capable of decoupling normal stress and shear stress. The flexible tactile sensor is fabricated on a thin polyimide substrate and consists of four self-bending piezoresistive cantilevers in a cross-shaped configuration, which are embedded in an elastomer. The sensor can decouple the tactile information into a normal stress and a shear stress with simple summation and differencing algorithms, and the measurement error is kept within 3%. Moreover, the sensitivity and detection threshold of the sensor can be adjusted by simply changing the elastic material. As a demonstration, the flexible tactile sensor is integrated into a robotic manipulator to precisely estimate the weight of the grasped objects, which shows great potential for application in robotic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性触觉传感器,具有嵌入弹性体中的毛发结构,用于法向和剪切应力传感
赋予机器人多向触觉感知能力一直是柔性电子和智能机器人领域的一个具有挑战性的课题。本文报道了一种高灵敏度柔性触觉传感器,该传感器具有弹性体嵌入毛结构,能够解耦正应力和剪应力。柔性触觉传感器是在薄聚酰亚胺基板上制造的,由四个自弯曲的压阻悬臂组成,呈十字形结构,嵌入弹性体中。该传感器通过简单的求和和差分算法将触觉信息解耦为正应力和剪应力,测量误差控制在3%以内。此外,传感器的灵敏度和检测阈值可以通过简单地改变弹性材料来调节。作为演示,将柔性触觉传感器集成到机器人机械手中,以精确估计抓取物体的重量,在机器人系统中显示出巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Unity quantum yield of InP/ZnSe/ZnS quantum dots enabled by Zn halide-derived hybrid shelling approach Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications Liquid metal neuro-electrical interface 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1