Removal of Neonicotinoid Insecticides in a Flat-plate Photoreactor

Pub Date : 2023-09-17 DOI:10.15255/kui.2022.059
Ivana Elizabeta Zelić, Vesna Tomašić, Zoran Gomzi
{"title":"Removal of Neonicotinoid Insecticides in a Flat-plate Photoreactor","authors":"Ivana Elizabeta Zelić, Vesna Tomašić, Zoran Gomzi","doi":"10.15255/kui.2022.059","DOIUrl":null,"url":null,"abstract":"The aim of this study was to investigate the photolytic and photocatalytic degradation of neonicotinoids in an aqueous solution. Acetamiprid (ACE) and thiacloprid (TIA), two widely used insecticides, were used as model components. Experiments were performed in a flat-plate photoreactor under conditions of recirculation of the reaction mix - ture over an immobilised photocatalyst layer (TiO 2 modified by urea) using two artificial lamps for simulation of solar irradiation (2.4 % UVB and 12 % UVA; 300–700 nm). The catalyst used was characterised by XRD, UV/Vis-DRS, BET, SEM/EDX, and CHNS analysis. All experiments were performed at room temperature and atmospheric pressure, at a recirculation flow rate of 200 cm 3 min −1 , and at an initial concentration of ACE and TIA of 10 mg dm −3 . For most measurements, the reaction mixture was sonicated for 15 min immediately before charging the reactor. The study focused on the influence of the pH of the initial solution on the efficiency of photocatalytic and photolytic degradation. It was found that photocatalytic deg - radation of the two model components was most effective under acidic operating conditions, i.e. , at pH 4.5, while photolysis resulted in their minimum degradation. It was also observed that pretreatment of the reaction mixture with ultrasound promoted photocatalytic degradation, while in the case of photolytic degradation, the application of ultrasound did not contribute to better degradation. Finally, photocatalytic degradation of TIA proved to be more successful than photodegradation of ACE (66.4 % vs. 25.8 %) under identical process conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15255/kui.2022.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to investigate the photolytic and photocatalytic degradation of neonicotinoids in an aqueous solution. Acetamiprid (ACE) and thiacloprid (TIA), two widely used insecticides, were used as model components. Experiments were performed in a flat-plate photoreactor under conditions of recirculation of the reaction mix - ture over an immobilised photocatalyst layer (TiO 2 modified by urea) using two artificial lamps for simulation of solar irradiation (2.4 % UVB and 12 % UVA; 300–700 nm). The catalyst used was characterised by XRD, UV/Vis-DRS, BET, SEM/EDX, and CHNS analysis. All experiments were performed at room temperature and atmospheric pressure, at a recirculation flow rate of 200 cm 3 min −1 , and at an initial concentration of ACE and TIA of 10 mg dm −3 . For most measurements, the reaction mixture was sonicated for 15 min immediately before charging the reactor. The study focused on the influence of the pH of the initial solution on the efficiency of photocatalytic and photolytic degradation. It was found that photocatalytic deg - radation of the two model components was most effective under acidic operating conditions, i.e. , at pH 4.5, while photolysis resulted in their minimum degradation. It was also observed that pretreatment of the reaction mixture with ultrasound promoted photocatalytic degradation, while in the case of photolytic degradation, the application of ultrasound did not contribute to better degradation. Finally, photocatalytic degradation of TIA proved to be more successful than photodegradation of ACE (66.4 % vs. 25.8 %) under identical process conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
平板光反应器中新烟碱类杀虫剂的去除
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1