Xinyuan Han, Chen Yang, Xiao Weihua, Jie Zhou, Wenfeng Li
{"title":"Modeling the yield of winter maize using biomass distribution index in the tropical region of Yunnan, China","authors":"Xinyuan Han, Chen Yang, Xiao Weihua, Jie Zhou, Wenfeng Li","doi":"10.1590/s1678-3921.pab2023.v58.03221","DOIUrl":null,"url":null,"abstract":"Abstract The objective of this work was to establish and validate the dry matter distribution and yield prediction models based on physiological developmental timing, to compare the differences between the dry mass distribution index model and the dry mass distribution coefficient model, for the simulation of ear dry mass and to improve the accuracy of maize growth models for predicting yield. The experiments were conducted in three tropical sites (Longchuan, Mangshi, and Ruili) in the tropical region of Yunnan Province, China. The NRMS of ear dry mass and yield were generally less than 10. The dry mass distribution index method (NRMS = 5.44% and RMSE = 807.22 kg ha-1 for ear dry mass; and NRMS = 7.32% and RMSE = 707.67 kg ha-1 for grain yield) is better than the dry mass distribution coefficient method (NRMS = 7.52% and RMSE = 1115.31 kg ha-1 for ear dry mass; NRMS = 8.6% and RMSE = 830.76 kgha-1 for grain yield) to simulate maize ear dry mass and grain yield. The distribution index model improves the accuracy of the model, which is valuable for future maize production and management in Yunnan.","PeriodicalId":19826,"journal":{"name":"Pesquisa Agropecuaria Brasileira","volume":"24 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Agropecuaria Brasileira","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1678-3921.pab2023.v58.03221","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The objective of this work was to establish and validate the dry matter distribution and yield prediction models based on physiological developmental timing, to compare the differences between the dry mass distribution index model and the dry mass distribution coefficient model, for the simulation of ear dry mass and to improve the accuracy of maize growth models for predicting yield. The experiments were conducted in three tropical sites (Longchuan, Mangshi, and Ruili) in the tropical region of Yunnan Province, China. The NRMS of ear dry mass and yield were generally less than 10. The dry mass distribution index method (NRMS = 5.44% and RMSE = 807.22 kg ha-1 for ear dry mass; and NRMS = 7.32% and RMSE = 707.67 kg ha-1 for grain yield) is better than the dry mass distribution coefficient method (NRMS = 7.52% and RMSE = 1115.31 kg ha-1 for ear dry mass; NRMS = 8.6% and RMSE = 830.76 kgha-1 for grain yield) to simulate maize ear dry mass and grain yield. The distribution index model improves the accuracy of the model, which is valuable for future maize production and management in Yunnan.
期刊介绍:
Pesquisa Agropecuária Brasileira – PAB – is issued monthly by Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, affiliated to Ministry of Agriculture, Livestock and Food Supply. PAB publishes original scientific-technological articles on Plant Physiology, Plant Pathology, Crop Science, Genetics, Soil Science, Food Technology and Animal Science.
Its abbreviated title is Pesq. agropec. bras., and it should be used in bibliographies, footnotes, references and bibliographic strips.