Alaa Khalaf Hamoud, Ali Salah Alasady, Wid Akeel Awadh, Jasim Mohammed Dahr, Mohammed B.M. Kamel, Aqeel Majeed Humadi, Ihab Ahmed Najm
{"title":"A comparative study of supervised/unsupervised machine learning algorithms with feature selection approaches to predict student performance","authors":"Alaa Khalaf Hamoud, Ali Salah Alasady, Wid Akeel Awadh, Jasim Mohammed Dahr, Mohammed B.M. Kamel, Aqeel Majeed Humadi, Ihab Ahmed Najm","doi":"10.1504/ijdmmm.2023.134590","DOIUrl":null,"url":null,"abstract":"The field of educational data mining (EDM) is one of the most growing fields that aims to improve the performance of students, academic staff, and overall institutional performance. The implementing process of data mining algorithms almost needs the feature selection process to find the most correlated features and improve the accuracy. In this paper, a comparative study is performed to study implementation of supervised/unsupervised algorithms in predicting the students' performance. The student's grade is classified using different fields of supervised and unsupervised algorithms such as decision trees, clustering, and neural networks. These algorithms were examined over the questionnaire dataset before/after feature selection to measure the effect of feature selection on the result accuracy. The results showed that the random forest decision tree outperformed other supervised/unsupervised algorithms. The results also showed that the performance evaluation of algorithms with the dataset after removing the less correlated attributes is enhanced for most of the algorithms.","PeriodicalId":43061,"journal":{"name":"International Journal of Data Mining Modelling and Management","volume":"2015 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Modelling and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdmmm.2023.134590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The field of educational data mining (EDM) is one of the most growing fields that aims to improve the performance of students, academic staff, and overall institutional performance. The implementing process of data mining algorithms almost needs the feature selection process to find the most correlated features and improve the accuracy. In this paper, a comparative study is performed to study implementation of supervised/unsupervised algorithms in predicting the students' performance. The student's grade is classified using different fields of supervised and unsupervised algorithms such as decision trees, clustering, and neural networks. These algorithms were examined over the questionnaire dataset before/after feature selection to measure the effect of feature selection on the result accuracy. The results showed that the random forest decision tree outperformed other supervised/unsupervised algorithms. The results also showed that the performance evaluation of algorithms with the dataset after removing the less correlated attributes is enhanced for most of the algorithms.
期刊介绍:
Facilitating transformation from data to information to knowledge is paramount for organisations. Companies are flooded with data and conflicting information, but with limited real usable knowledge. However, rarely should a process be looked at from limited angles or in parts. Isolated islands of data mining, modelling and management (DMMM) should be connected. IJDMMM highlightes integration of DMMM, statistics/machine learning/databases, each element of data chain management, types of information, algorithms in software; from data pre-processing to post-processing; between theory and applications. Topics covered include: -Artificial intelligence- Biomedical science- Business analytics/intelligence, process modelling- Computer science, database management systems- Data management, mining, modelling, warehousing- Engineering- Environmental science, environment (ecoinformatics)- Information systems/technology, telecommunications/networking- Management science, operations research, mathematics/statistics- Social sciences- Business/economics, (computational) finance- Healthcare, medicine, pharmaceuticals- (Computational) chemistry, biology (bioinformatics)- Sustainable mobility systems, intelligent transportation systems- National security