EEG-Based Human Stress Level Predictor Using Customized EEGNet Model

IF 0.4 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Data Mining Modelling and Management Pub Date : 2023-08-08 DOI:10.46610/jodmm.2023.v08i02.003
Janani B, R. A. Kumar, V. K, Monisha H M M
{"title":"EEG-Based Human Stress Level Predictor Using Customized EEGNet Model","authors":"Janani B, R. A. Kumar, V. K, Monisha H M M","doi":"10.46610/jodmm.2023.v08i02.003","DOIUrl":null,"url":null,"abstract":"The increasing interest in Electro-encephalogram (EEG)-based stress prediction is driven by the global prevalence of stress. However, current studies predominantly rely on machine learning and deep learning techniques, utilizing extensive EEG data from 8 to 32 channels for stress prediction. In contrast, our research proposes an innovative approach that predicts stress using only 2 EEG channels and focuses on a specific frequency band (beta). The dataset used in this work is collected and pre-processed in a novel approach which is discussed in depth. Moreover, we have transformed the entire system into a TFLite model to enhance portability. Our experimental results, conducted on 10 subjects, demonstrate that our proposed technique achieves a remarkable prediction accuracy of 74%. Notably, this performance is comparable to other models that employ up to 128-channel data and consider multiple frequency bands. Our work lays the foundation for future advancements, with the ultimate goal of developing a portable EEG-based headband featuring only 2 channels. This would enable stress prediction, and the results could be easily accessed through either a mobile or web interface. By streamlining the EEG data acquisition and focusing on a specific frequency band, our approach not only achieves impressive prediction accuracy but also paves the way for the development of more user-friendly and accessible stress prediction technologies. This has the potential to significantly impact stress management and well-being on a global scale.","PeriodicalId":43061,"journal":{"name":"International Journal of Data Mining Modelling and Management","volume":"226 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Modelling and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/jodmm.2023.v08i02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing interest in Electro-encephalogram (EEG)-based stress prediction is driven by the global prevalence of stress. However, current studies predominantly rely on machine learning and deep learning techniques, utilizing extensive EEG data from 8 to 32 channels for stress prediction. In contrast, our research proposes an innovative approach that predicts stress using only 2 EEG channels and focuses on a specific frequency band (beta). The dataset used in this work is collected and pre-processed in a novel approach which is discussed in depth. Moreover, we have transformed the entire system into a TFLite model to enhance portability. Our experimental results, conducted on 10 subjects, demonstrate that our proposed technique achieves a remarkable prediction accuracy of 74%. Notably, this performance is comparable to other models that employ up to 128-channel data and consider multiple frequency bands. Our work lays the foundation for future advancements, with the ultimate goal of developing a portable EEG-based headband featuring only 2 channels. This would enable stress prediction, and the results could be easily accessed through either a mobile or web interface. By streamlining the EEG data acquisition and focusing on a specific frequency band, our approach not only achieves impressive prediction accuracy but also paves the way for the development of more user-friendly and accessible stress prediction technologies. This has the potential to significantly impact stress management and well-being on a global scale.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的人类压力水平预测器使用定制的脑电图网络模型
基于脑电图(EEG)的压力预测越来越受到全球压力流行的推动。然而,目前的研究主要依赖于机器学习和深度学习技术,利用8到32个通道的大量EEG数据进行应力预测。相比之下,我们的研究提出了一种创新的方法,即仅使用2个EEG通道并专注于特定频段(beta)来预测压力。本工作中使用的数据集以一种新颖的方法收集和预处理,并对此进行了深入讨论。此外,我们已将整个系统转换为TFLite模型,以增强可移植性。我们对10个受试者进行的实验结果表明,我们提出的技术达到了74%的显著预测精度。值得注意的是,这种性能可与使用多达128通道数据并考虑多个频带的其他模型相媲美。我们的工作为未来的发展奠定了基础,最终目标是开发一种只有两个通道的便携式脑电图头带。这将使压力预测成为可能,结果可以很容易地通过手机或网络界面访问。通过简化EEG数据采集并专注于特定频段,我们的方法不仅实现了令人印象深刻的预测精度,而且为开发更用户友好和易于访问的应力预测技术铺平了道路。这有可能在全球范围内对压力管理和幸福感产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Data Mining Modelling and Management
International Journal of Data Mining Modelling and Management COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
1.10
自引率
0.00%
发文量
22
期刊介绍: Facilitating transformation from data to information to knowledge is paramount for organisations. Companies are flooded with data and conflicting information, but with limited real usable knowledge. However, rarely should a process be looked at from limited angles or in parts. Isolated islands of data mining, modelling and management (DMMM) should be connected. IJDMMM highlightes integration of DMMM, statistics/machine learning/databases, each element of data chain management, types of information, algorithms in software; from data pre-processing to post-processing; between theory and applications. Topics covered include: -Artificial intelligence- Biomedical science- Business analytics/intelligence, process modelling- Computer science, database management systems- Data management, mining, modelling, warehousing- Engineering- Environmental science, environment (ecoinformatics)- Information systems/technology, telecommunications/networking- Management science, operations research, mathematics/statistics- Social sciences- Business/economics, (computational) finance- Healthcare, medicine, pharmaceuticals- (Computational) chemistry, biology (bioinformatics)- Sustainable mobility systems, intelligent transportation systems- National security
期刊最新文献
Security Challenges in Data Collection and Processing in Industry 4.0 Implementation EEG-Based Human Stress Level Predictor Using Customized EEGNet Model Significance of Information Communication Technology and Assistive Technology in Relation to the Mentally Retarded Children’s Education Detection of Parkinson's Disease using Machine Learning Algorithms and Handwriting Analysis Predicting Resident Intention Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1