{"title":"EEG-Based Human Stress Level Predictor Using Customized EEGNet Model","authors":"Janani B, R. A. Kumar, V. K, Monisha H M M","doi":"10.46610/jodmm.2023.v08i02.003","DOIUrl":null,"url":null,"abstract":"The increasing interest in Electro-encephalogram (EEG)-based stress prediction is driven by the global prevalence of stress. However, current studies predominantly rely on machine learning and deep learning techniques, utilizing extensive EEG data from 8 to 32 channels for stress prediction. In contrast, our research proposes an innovative approach that predicts stress using only 2 EEG channels and focuses on a specific frequency band (beta). The dataset used in this work is collected and pre-processed in a novel approach which is discussed in depth. Moreover, we have transformed the entire system into a TFLite model to enhance portability. Our experimental results, conducted on 10 subjects, demonstrate that our proposed technique achieves a remarkable prediction accuracy of 74%. Notably, this performance is comparable to other models that employ up to 128-channel data and consider multiple frequency bands. Our work lays the foundation for future advancements, with the ultimate goal of developing a portable EEG-based headband featuring only 2 channels. This would enable stress prediction, and the results could be easily accessed through either a mobile or web interface. By streamlining the EEG data acquisition and focusing on a specific frequency band, our approach not only achieves impressive prediction accuracy but also paves the way for the development of more user-friendly and accessible stress prediction technologies. This has the potential to significantly impact stress management and well-being on a global scale.","PeriodicalId":43061,"journal":{"name":"International Journal of Data Mining Modelling and Management","volume":"226 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Modelling and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46610/jodmm.2023.v08i02.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing interest in Electro-encephalogram (EEG)-based stress prediction is driven by the global prevalence of stress. However, current studies predominantly rely on machine learning and deep learning techniques, utilizing extensive EEG data from 8 to 32 channels for stress prediction. In contrast, our research proposes an innovative approach that predicts stress using only 2 EEG channels and focuses on a specific frequency band (beta). The dataset used in this work is collected and pre-processed in a novel approach which is discussed in depth. Moreover, we have transformed the entire system into a TFLite model to enhance portability. Our experimental results, conducted on 10 subjects, demonstrate that our proposed technique achieves a remarkable prediction accuracy of 74%. Notably, this performance is comparable to other models that employ up to 128-channel data and consider multiple frequency bands. Our work lays the foundation for future advancements, with the ultimate goal of developing a portable EEG-based headband featuring only 2 channels. This would enable stress prediction, and the results could be easily accessed through either a mobile or web interface. By streamlining the EEG data acquisition and focusing on a specific frequency band, our approach not only achieves impressive prediction accuracy but also paves the way for the development of more user-friendly and accessible stress prediction technologies. This has the potential to significantly impact stress management and well-being on a global scale.
期刊介绍:
Facilitating transformation from data to information to knowledge is paramount for organisations. Companies are flooded with data and conflicting information, but with limited real usable knowledge. However, rarely should a process be looked at from limited angles or in parts. Isolated islands of data mining, modelling and management (DMMM) should be connected. IJDMMM highlightes integration of DMMM, statistics/machine learning/databases, each element of data chain management, types of information, algorithms in software; from data pre-processing to post-processing; between theory and applications. Topics covered include: -Artificial intelligence- Biomedical science- Business analytics/intelligence, process modelling- Computer science, database management systems- Data management, mining, modelling, warehousing- Engineering- Environmental science, environment (ecoinformatics)- Information systems/technology, telecommunications/networking- Management science, operations research, mathematics/statistics- Social sciences- Business/economics, (computational) finance- Healthcare, medicine, pharmaceuticals- (Computational) chemistry, biology (bioinformatics)- Sustainable mobility systems, intelligent transportation systems- National security