CBP-QSNN: Spiking Neural Networks Quantized Using Constrained Backpropagation

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Emerging and Selected Topics in Circuits and Systems Pub Date : 2023-10-31 DOI:10.1109/JETCAS.2023.3328911
Donghyung Yoo;Doo Seok Jeong
{"title":"CBP-QSNN: Spiking Neural Networks Quantized Using Constrained Backpropagation","authors":"Donghyung Yoo;Doo Seok Jeong","doi":"10.1109/JETCAS.2023.3328911","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) support sparse event-based data processing at high power efficiency when implemented in event-based neuromorphic processors. However, the limited on- chip memory capacity of neuromorphic processors strictly delimits the depth and width of SNNs implemented. A direct solution is the use of quantized SNNs (QSNNs) in place of SNNs with FP32 weights. To this end, we propose a method to quantize the weights using constrained backpropagation (CBP) with the Lagrangian function (conventional loss function plus well-defined weight-constraint functions) as an objective function. This work utilizes CBP as a post-training algorithm for deep SNNs pre-trained using various state-of-the-art methods including direct training (TSSL-BP, STBP, and surrogate gradient) and DNN-to-SNN conversion (SNN-Calibration), validating CBP as a general framework for QSNNs. CBP-QSNNs highlight their high accuracy insomuch as the degradation of accuracy on CIFAR-10, DVS128 Gesture, and CIFAR10-DVS in the worst case is less than 1%. Particularly, CBP-QSNNs for SNN-Calibration-pretrained SNNs on CIFAR-100 highlight an unexpected large increase in accuracy by 3.72% while using small weight-memory (3.5% of the FP32 case).","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10302274/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Networks (SNNs) support sparse event-based data processing at high power efficiency when implemented in event-based neuromorphic processors. However, the limited on- chip memory capacity of neuromorphic processors strictly delimits the depth and width of SNNs implemented. A direct solution is the use of quantized SNNs (QSNNs) in place of SNNs with FP32 weights. To this end, we propose a method to quantize the weights using constrained backpropagation (CBP) with the Lagrangian function (conventional loss function plus well-defined weight-constraint functions) as an objective function. This work utilizes CBP as a post-training algorithm for deep SNNs pre-trained using various state-of-the-art methods including direct training (TSSL-BP, STBP, and surrogate gradient) and DNN-to-SNN conversion (SNN-Calibration), validating CBP as a general framework for QSNNs. CBP-QSNNs highlight their high accuracy insomuch as the degradation of accuracy on CIFAR-10, DVS128 Gesture, and CIFAR10-DVS in the worst case is less than 1%. Particularly, CBP-QSNNs for SNN-Calibration-pretrained SNNs on CIFAR-100 highlight an unexpected large increase in accuracy by 3.72% while using small weight-memory (3.5% of the FP32 case).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBP-QSNN:使用受限反向传播量化的尖峰神经网络
尖峰神经网络(SNN)在基于事件的神经形态处理器中实现时,能以高能效支持基于稀疏事件的数据处理。然而,神经形态处理器有限的芯片内存容量严格限制了 SNN 的深度和宽度。一个直接的解决方案是使用量化 SNN(QSNN)来替代具有 FP32 权重的 SNN。为此,我们提出了一种使用约束反向传播(CBP)量化权重的方法,并将拉格朗日函数(传统损失函数加上定义明确的权重约束函数)作为目标函数。这项研究将 CBP 作为后训练算法,用于使用各种先进方法(包括直接训练(TSSL-BP、STBP 和代理梯度)和 DNN 到 SNN 转换(SNN-Calibration))预训练的深度 SNN,从而验证了 CBP 作为 QSNN 通用框架的有效性。CBP-QSNNs 突出了其高准确度,因为在最坏情况下,CIFAR-10、DVS128 Gesture 和 CIFAR10-DVS 的准确度下降不到 1%。特别是,CBP-QSNN 在 CIFAR-100 上用于 SNN-Calibration 训练的 SNN,在使用少量权重内存(FP32 案例的 3.5%)的情况下,准确率意外大幅提高了 3.72%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Journal on Emerging and Selected Topics in Circuits and Systems Information for Authors IEEE Circuits and Systems Society Information IEEE Journal on Emerging and Selected Topics in Circuits and Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1