Operating Coupled VO₂-Based Oscillators for Solving Ising Models

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Emerging and Selected Topics in Circuits and Systems Pub Date : 2023-10-31 DOI:10.1109/JETCAS.2023.3328887
Maria J. Avedillo;Manuel Jiménez Través;Corentin Delacour;Aida Todri-Sanial;Bernabé Linares-Barranco;Juan Núñez
{"title":"Operating Coupled VO₂-Based Oscillators for Solving Ising Models","authors":"Maria J. Avedillo;Manuel Jiménez Través;Corentin Delacour;Aida Todri-Sanial;Bernabé Linares-Barranco;Juan Núñez","doi":"10.1109/JETCAS.2023.3328887","DOIUrl":null,"url":null,"abstract":"Coupled nano-oscillators are attracting increasing interest because of their potential to perform computation efficiently, enabling new applications in computing and information processing. The potential of phase transition devices for such dynamical systems has recently been recognized. This paper investigates the implementation of coupled VO2-based oscillator networks to solve combinatorial optimization problems. The target problem is mapped to an Ising model, which is solved by the synchronization dynamics of the system. Different factors that impact the probability of the system reaching the ground state of the Ising Hamiltonian and, therefore, the optimum solution to the corresponding optimization problem, are analyzed. The simulation-based analysis has led to the proposal of a novel Second-Harmonic Injection Locking (SHIL) schedule. Its main feature is that SHIL signal amplitude is repeatedly smoothly increased and decreased. Reducing SHIL strength is the mechanism that enables escaping from local minimum energy states. Our experiments show better results in terms of success probability than previously reported approaches. An experimental Oscillatory Ising Machine (OIM) has been built to validate our proposal.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10302292/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Coupled nano-oscillators are attracting increasing interest because of their potential to perform computation efficiently, enabling new applications in computing and information processing. The potential of phase transition devices for such dynamical systems has recently been recognized. This paper investigates the implementation of coupled VO2-based oscillator networks to solve combinatorial optimization problems. The target problem is mapped to an Ising model, which is solved by the synchronization dynamics of the system. Different factors that impact the probability of the system reaching the ground state of the Ising Hamiltonian and, therefore, the optimum solution to the corresponding optimization problem, are analyzed. The simulation-based analysis has led to the proposal of a novel Second-Harmonic Injection Locking (SHIL) schedule. Its main feature is that SHIL signal amplitude is repeatedly smoothly increased and decreased. Reducing SHIL strength is the mechanism that enables escaping from local minimum energy states. Our experiments show better results in terms of success probability than previously reported approaches. An experimental Oscillatory Ising Machine (OIM) has been built to validate our proposal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 VO₂的操作耦合振荡器用于求解等效模型
由于耦合纳米振荡器具有高效计算的潜力,可在计算和信息处理领域实现新的应用,因此正吸引着越来越多的关注。相变器件在此类动态系统中的潜力最近已得到认可。本文研究了如何利用基于 VO2 的耦合振荡器网络来解决组合优化问题。目标问题被映射到一个伊辛模型,通过系统的同步动力学来解决。分析了影响系统达到伊辛哈密顿的基态概率的不同因素,从而分析了相应优化问题的最优解。通过模拟分析,提出了一种新颖的二次谐波注入锁定(SHIL)计划。它的主要特点是 SHIL 信号幅度反复平滑地增加和减少。降低 SHIL 强度是摆脱局部最小能量状态的机制。我们的实验结果表明,与之前报道的方法相比,我们的成功概率更高。为了验证我们的建议,我们建立了一个实验性的振荡伊辛机(OIM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Journal on Emerging and Selected Topics in Circuits and Systems Information for Authors IEEE Circuits and Systems Society Information IEEE Journal on Emerging and Selected Topics in Circuits and Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1