Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead

Arun A. Ravindran
{"title":"Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead","authors":"Arun A. Ravindran","doi":"10.3390/iot4040021","DOIUrl":null,"url":null,"abstract":"The falling cost of IoT cameras, the advancement of AI-based computer vision algorithms, and powerful hardware accelerators for deep learning have enabled the widespread deployment of surveillance cameras with the ability to automatically analyze streaming video feeds to detect events of interest. While streaming video analytics is currently largely performed in the cloud, edge computing has emerged as a pivotal component due to its advantages of low latency, reduced bandwidth, and enhanced privacy. However, a distinct gap persists between state-of-the-art computer vision algorithms and the successful practical implementation of edge-based streaming video analytics systems. This paper presents a comprehensive review of more than 30 research papers published over the last 6 years on IoT edge streaming video analytics (IE-SVA) systems. The papers are analyzed across 17 distinct dimensions. Unlike prior reviews, we examine each system holistically, identifying their strengths and weaknesses in diverse implementations. Our findings suggest that certain critical topics necessary for the practical realization of IE-SVA systems are not sufficiently addressed in current research. Based on these observations, we propose research trajectories across short-, medium-, and long-term horizons. Additionally, we explore trending topics in other computing areas that can significantly impact the evolution of IE-SVA systems.","PeriodicalId":6745,"journal":{"name":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","volume":"19 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iot4040021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The falling cost of IoT cameras, the advancement of AI-based computer vision algorithms, and powerful hardware accelerators for deep learning have enabled the widespread deployment of surveillance cameras with the ability to automatically analyze streaming video feeds to detect events of interest. While streaming video analytics is currently largely performed in the cloud, edge computing has emerged as a pivotal component due to its advantages of low latency, reduced bandwidth, and enhanced privacy. However, a distinct gap persists between state-of-the-art computer vision algorithms and the successful practical implementation of edge-based streaming video analytics systems. This paper presents a comprehensive review of more than 30 research papers published over the last 6 years on IoT edge streaming video analytics (IE-SVA) systems. The papers are analyzed across 17 distinct dimensions. Unlike prior reviews, we examine each system holistically, identifying their strengths and weaknesses in diverse implementations. Our findings suggest that certain critical topics necessary for the practical realization of IE-SVA systems are not sufficiently addressed in current research. Based on these observations, we propose research trajectories across short-, medium-, and long-term horizons. Additionally, we explore trending topics in other computing areas that can significantly impact the evolution of IE-SVA systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流媒体视频分析的物联网边缘计算系统:后路与前路
物联网摄像机成本的下降、基于人工智能的计算机视觉算法的进步以及用于深度学习的强大硬件加速器,使得能够自动分析流媒体视频馈送以检测感兴趣事件的监控摄像机得以广泛部署。虽然流媒体视频分析目前主要在云中执行,但边缘计算由于其低延迟、减少带宽和增强隐私等优势而成为关键组件。然而,最先进的计算机视觉算法与基于边缘的流媒体视频分析系统的成功实际实施之间仍然存在明显的差距。本文全面回顾了过去6年来发表的30多篇关于物联网边缘流媒体视频分析(IE-SVA)系统的研究论文。论文从17个不同的维度进行分析。与之前的评论不同,我们从整体上检查每个系统,确定它们在不同实现中的优点和缺点。我们的研究结果表明,目前的研究还没有充分解决实际实现IE-SVA系统所需的某些关键问题。基于这些观察,我们提出了跨越短期、中期和长期视野的研究轨迹。此外,我们还探讨了其他计算领域中可能对IE-SVA系统的发展产生重大影响的热门话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constraint-Aware Federated Scheduling for Data Center Workloads A Novel Internet of Things-Based System for Ten-Pin Bowling Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead IoT-Applicable Generalized Frameproof Combinatorial Designs Challenges and Opportunities in the Internet of Intelligence of Things in Higher Education—Towards Bridging Theory and Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1