Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY Batteries Pub Date : 2023-10-24 DOI:10.3390/batteries9110525
Daniel A. Gribble, Vilas G. Pol
{"title":"Polydopamine-Modified Carboxymethyl Cellulose as Advanced Polysulfide Trapping Binder","authors":"Daniel A. Gribble, Vilas G. Pol","doi":"10.3390/batteries9110525","DOIUrl":null,"url":null,"abstract":"The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":"6 3","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries9110525","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The search for a high-energy-density alternative to lithium-ion batteries has led to great interest in the lithium sulfur battery (LSB). However, poor cycle lifetimes and coulombic efficiencies (CEs) due to detrimental lithium polysulfide (LiPS) shuttling has hindered its widespread adoption. To address this challenge, a modified sodium carboxymethyl cellulose (CMC) polymer with integrated dopamine moieties and polydopamine nanoparticles was created through a facile one-pot dopamine (DOP) amidation reaction to strengthen noncovalent interactions with LiPSs and mitigate the shuttling effect. The resulting CMC-DOP binder improved electrode wettability, adhesion, and electrochemical performance. Compared to LSBs with a standard CMC binder, CMC-DOP 5:1 (with a 5:1 weight ratio of CMC to dopamine precursor) improves the specific capacity at cycle 100 by 38% to 552 mAh g−1 and CE from 96.8 to 98.9%. LSBs show good stability, even after 500 cycles. Post-mortem electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) studies confirmed the effectiveness of the CMC-DOP in confining LiPS in the cathode. This simple but effective nature-inspired strategy promises to enhance the viability of LSBs without using harmful chemicals or adding excess bulk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚多巴胺改性羧甲基纤维素作为高级聚硫捕集剂
寻找一种高能量密度的锂离子电池替代品引起了人们对锂硫电池(LSB)的极大兴趣。然而,由于聚硫化锂(LiPS)的有害穿梭,较差的循环寿命和库仑效率(CEs)阻碍了它的广泛应用。为了解决这一挑战,通过简单的一锅多巴胺(DOP)酰胺化反应,制备了一种整合多巴胺部分和聚多巴胺纳米颗粒的改性羧甲基纤维素钠(CMC)聚合物,以加强与LiPSs的非共价相互作用,并减轻穿梭效应。CMC-DOP粘合剂改善了电极的润湿性、附着力和电化学性能。与使用标准CMC粘合剂的lsb相比,CMC- dop 5:1 (CMC与多巴胺前体的重量比为5:1)将循环100时的比容量提高了38%,达到552 mAh g - 1, CE从96.8提高到98.9%。即使经过500次循环,lbs也表现出良好的稳定性。电化学阻抗谱(EIS)和能量色散谱(EDS)研究证实了CMC-DOP在阴极中限制lip的有效性。这种简单而有效的自然策略有望在不使用有害化学物质或增加多余体积的情况下提高lsdb的生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
期刊最新文献
A Health Assessment Method for Lithium-Ion Batteries Based on Evidence Reasoning Rules with Dynamic Reference Values Facile Fabrication of Porous MoSe2/Carbon Microspheres via the Aerosol Process as Anode Materials in Potassium-Ion Batteries Voltage and Overpotential Prediction of Vanadium Redox Flow Batteries with Artificial Neural Networks An Industrial Perspective and Intellectual Property Landscape on Solid-State Battery Technology with a Focus on Solid-State Electrolyte Chemistries Recent Advances in Electrospun Nanostructured Electrodes in Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1