Shiyuan Qi, Yunchao Guan, Yang Liu, Yiqiang Zhang, Guangbin Yu
{"title":"Impact-meshing vibration characteristics of high-speed gear systems with Backlash","authors":"Shiyuan Qi, Yunchao Guan, Yang Liu, Yiqiang Zhang, Guangbin Yu","doi":"10.1177/16878132231200483","DOIUrl":null,"url":null,"abstract":"The meshing process includes high-speed impact between the teeth. The vibration and noise in the gear transmission become prominent owing to the backlash between gears. Currently, the concentrated mass model is primarily used to analyse the vibration and noise mechanism of gear transmission, and it is difficult to effectively explain high-speed gear collision. In this study, an improved impact vibration model was applied to the meshing state of a high-speed gear. The gear transmission was simplified as a collision vibration system with absolute and traversable boundaries, and the piecewise-smooth dynamics model of the gear system is established. A mapping dynamic analysis method was then used to describe the impact and meshing boundary of gears. The impact-meshing situation of the gear system was observed, and the vibration response of the system under different speeds and loads was analysed using numerical simulation. The results revealed that the main source of the gear vibration was the meshing frequency of a gear pair. The resonance generated by the modulation of the rotation and meshing is the main reason for the long-term impact-meshing phenomenon of the gear transmission system. The results of this study are of great significance as they reveal the vibration characteristics of a high-speed gear transmission system.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/16878132231200483","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The meshing process includes high-speed impact between the teeth. The vibration and noise in the gear transmission become prominent owing to the backlash between gears. Currently, the concentrated mass model is primarily used to analyse the vibration and noise mechanism of gear transmission, and it is difficult to effectively explain high-speed gear collision. In this study, an improved impact vibration model was applied to the meshing state of a high-speed gear. The gear transmission was simplified as a collision vibration system with absolute and traversable boundaries, and the piecewise-smooth dynamics model of the gear system is established. A mapping dynamic analysis method was then used to describe the impact and meshing boundary of gears. The impact-meshing situation of the gear system was observed, and the vibration response of the system under different speeds and loads was analysed using numerical simulation. The results revealed that the main source of the gear vibration was the meshing frequency of a gear pair. The resonance generated by the modulation of the rotation and meshing is the main reason for the long-term impact-meshing phenomenon of the gear transmission system. The results of this study are of great significance as they reveal the vibration characteristics of a high-speed gear transmission system.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering