Pub Date : 2024-01-01DOI: 10.1177/16878132231224538
Xingguo Yang, Ya Zhang, Xujun Li
Abnormal noise is the most prominent problem for motorcycles and affects the consumers’ purchasing desire and driving experience and the enterprise’s competitiveness. Usually, the noise from a newly assembled engine is detected by manual auscultation (MA) to determine if the engine is operating normally. However, MA is also affected by subjective and objective factors with severe labor intensity, and its accuracy greatly fluctuates. Importantly, MA cannot be applied in a corporation with mass production and high-quality requirements. To improve the efficiency and accuracy of motorcycle engine quality inspection and achieve intelligent production, an online engine abnormal noise detection method was proposed based on wavelet packet transform (WPT) and bispectrum analysis (BA); this method improved the accuracy and stability of the identification of the abnormal noise engine and reduced the cost of the check. First, the acoustic signal of the engine of the motorcycle was acquired by using a free-field microphone. Second, the background noise of signals was eliminated by using the wavelet correlation coefficient (WCC) theory, and the signal features were extracted by applying WPT and BA. Third, the feature vectors were normalized before being used as support vector machine (SVM) samples. Fourth, an appropriate kernel function and parameters were selected to train the vector machine using the training sets. Finally, the testing sets were used to inspect the accuracy of the vector machines. The result showed that the training accuracy is 95% and the testing accuracy is 97.5 of the samples were suitable by using the method of wavelet packet transform-bispectrum analysis-support vector machines (WPT-BA-SVM). WPT-BA-SVM effectively identified engine fault types and provided the theoretical foundation for the establishment of an engine abnormal noise online detection system.
异响是摩托车最突出的问题,影响着消费者的购买欲望和驾驶体验,也影响着企业的竞争力。通常情况下,通过人工听诊(MA)来检测新装配发动机的噪声,从而判断发动机是否工作正常。但人工听诊也受主客观因素的影响,劳动强度大,准确性波动大。重要的是,MA 无法应用于大规模生产和高质量要求的企业。为了提高摩托车发动机质量检测的效率和准确性,实现智能化生产,提出了一种基于小波包变换(WPT)和双谱分析(BA)的发动机异常噪声在线检测方法,该方法提高了发动机异常噪声识别的准确性和稳定性,降低了检测成本。首先,使用自由声场麦克风获取摩托车发动机的声学信号。其次,利用小波相关系数(WCC)理论消除信号的背景噪声,并应用 WPT 和 BA 提取信号特征。第三,对特征向量进行归一化处理,然后将其用作支持向量机(SVM)样本。第四,选择合适的核函数和参数,使用训练集对向量机进行训练。最后,使用测试集检测向量机的准确性。结果表明,采用小波包变换-双谱分析-支持向量机(WPT-BA-SVM)的方法,样本的训练准确率为 95%,测试准确率为 97.5%。WPT-BA-SVM 有效识别了发动机故障类型,为建立发动机异常噪声在线检测系统提供了理论基础。
{"title":"Abnormal noise identification of engines based on wavelet packet transform and bispectrum analysis","authors":"Xingguo Yang, Ya Zhang, Xujun Li","doi":"10.1177/16878132231224538","DOIUrl":"https://doi.org/10.1177/16878132231224538","url":null,"abstract":"Abnormal noise is the most prominent problem for motorcycles and affects the consumers’ purchasing desire and driving experience and the enterprise’s competitiveness. Usually, the noise from a newly assembled engine is detected by manual auscultation (MA) to determine if the engine is operating normally. However, MA is also affected by subjective and objective factors with severe labor intensity, and its accuracy greatly fluctuates. Importantly, MA cannot be applied in a corporation with mass production and high-quality requirements. To improve the efficiency and accuracy of motorcycle engine quality inspection and achieve intelligent production, an online engine abnormal noise detection method was proposed based on wavelet packet transform (WPT) and bispectrum analysis (BA); this method improved the accuracy and stability of the identification of the abnormal noise engine and reduced the cost of the check. First, the acoustic signal of the engine of the motorcycle was acquired by using a free-field microphone. Second, the background noise of signals was eliminated by using the wavelet correlation coefficient (WCC) theory, and the signal features were extracted by applying WPT and BA. Third, the feature vectors were normalized before being used as support vector machine (SVM) samples. Fourth, an appropriate kernel function and parameters were selected to train the vector machine using the training sets. Finally, the testing sets were used to inspect the accuracy of the vector machines. The result showed that the training accuracy is 95% and the testing accuracy is 97.5 of the samples were suitable by using the method of wavelet packet transform-bispectrum analysis-support vector machines (WPT-BA-SVM). WPT-BA-SVM effectively identified engine fault types and provided the theoretical foundation for the establishment of an engine abnormal noise online detection system.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"81 7","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139454666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/16878132231222728
Shuai Wang, Dawei Xin, Lang Yu, Qinghua Zhang
Multi-dimensional vibration isolation platforms often use parallel mechanisms to achieve multi-dimensional vibration isolation control. However, due to the high stiffness of the parallel mechanism, its own natural frequency is high, and it has good performance when applied to high-frequency vibration isolation, but it is hard to achieve low-frequency vibration isolation. This paper aims at the problem that the actual polishing and grinding equipment is often subjected to axial and circumferential low-frequency disturbances during operation, a novel C/2-(2-RRR) RR two-degree-of-freedom (2-DOF) translational-rotation low-frequency vibration isolation platform is proposed based on the singular configuration of planar 2-RRR mechanism. The coupling dynamic model of the vibration isolation platform is established, and the amplitude-frequency curve and force transmissibility curve are analyzed. The simulation analysis and prototype experiment are carried out by using the independent external excitation in both translational and rotational directions, and the corresponding linear system is compared to verify the effectiveness of the low-frequency vibration isolation of the two-degree-of-freedom vibration isolation platform.
{"title":"Design of a novel two-degree-of-freedom translational-rotation low-frequency vibration isolation platform","authors":"Shuai Wang, Dawei Xin, Lang Yu, Qinghua Zhang","doi":"10.1177/16878132231222728","DOIUrl":"https://doi.org/10.1177/16878132231222728","url":null,"abstract":"Multi-dimensional vibration isolation platforms often use parallel mechanisms to achieve multi-dimensional vibration isolation control. However, due to the high stiffness of the parallel mechanism, its own natural frequency is high, and it has good performance when applied to high-frequency vibration isolation, but it is hard to achieve low-frequency vibration isolation. This paper aims at the problem that the actual polishing and grinding equipment is often subjected to axial and circumferential low-frequency disturbances during operation, a novel C/2-(2-RRR) RR two-degree-of-freedom (2-DOF) translational-rotation low-frequency vibration isolation platform is proposed based on the singular configuration of planar 2-RRR mechanism. The coupling dynamic model of the vibration isolation platform is established, and the amplitude-frequency curve and force transmissibility curve are analyzed. The simulation analysis and prototype experiment are carried out by using the independent external excitation in both translational and rotational directions, and the corresponding linear system is compared to verify the effectiveness of the low-frequency vibration isolation of the two-degree-of-freedom vibration isolation platform.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"12 10","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/16878132231222067
Ming Shang, Zhendong Zhang, C. Yin, Kai Li
This paper presents a fuel consumption reduction control strategy for a newly-developed 48 V P0 mild hybrid electric vehicle and evaluates its fuel economy benefit experimentally. The strategy is designed with rule-based methods and utilizes various functions such as start-stop, torque boost, regeneration, load shift, BSG neutral mode and torque interventions with BSG. Fuel consumption comparison tests are performed in the WLTP cycle between the MHEV and the conventional vehicle. The authors evaluate the performance of specific key functions, analyze the energy flow of the 48 V battery, and calculate the fuel saving rate of the MHEV. The SOC of the 48 V battery is balanced in the WLTP cycle. The total energy charged to the 48 V battery is 378 Wh, of which 82% comes from the regeneration pattern. The total energy discharged from the 48 V battery is 355 Wh, of which 85% is consumed by the load shift pattern (BSG neutral state and Discharging state). The fuel consumption of the MHEV is reduced by 7.9% compared with the conventional vehicle in the WLTP cycle. The start-stop, BSG neutral, and torque interventions with BSG save fuel by 3.8%, 0.9%, and 0.5% respectively. The other hybrid functions save fuel by 2.7%.
本文介绍了一种针对新开发的 48 V P0 轻度混合动力电动汽车的降低油耗控制策略,并通过实验评估了其燃油经济性。该策略采用基于规则的方法进行设计,并利用了多种功能,如启动-停止、扭矩提升、再生、负载转换、BSG 中性模式和带 BSG 的扭矩干预。在 WLTP 循环中,对 MHEV 和传统汽车进行了油耗对比测试。作者评估了特定关键功能的性能,分析了 48 V 电池的能量流,并计算了 MHEV 的节油率。在 WLTP 循环中,48 V 电池的 SOC 保持平衡。充入 48 V 电池的总能量为 378 Wh,其中 82% 来自再生模式。从 48 V 电池中放出的总能量为 355 Wh,其中 85% 由负载转换模式(BSG 中性状态和放电状态)消耗。在 WLTP 循环中,MHEV 的油耗比传统汽车降低了 7.9%。起停、BSG 空档和带 BSG 的扭矩干预分别节油 3.8%、0.9% 和 0.5%。其他混合动力功能可节省燃料 2.7%。
{"title":"The development of the fuel saving control strategy for 48 V P0 system: Design and experimental investigation","authors":"Ming Shang, Zhendong Zhang, C. Yin, Kai Li","doi":"10.1177/16878132231222067","DOIUrl":"https://doi.org/10.1177/16878132231222067","url":null,"abstract":"This paper presents a fuel consumption reduction control strategy for a newly-developed 48 V P0 mild hybrid electric vehicle and evaluates its fuel economy benefit experimentally. The strategy is designed with rule-based methods and utilizes various functions such as start-stop, torque boost, regeneration, load shift, BSG neutral mode and torque interventions with BSG. Fuel consumption comparison tests are performed in the WLTP cycle between the MHEV and the conventional vehicle. The authors evaluate the performance of specific key functions, analyze the energy flow of the 48 V battery, and calculate the fuel saving rate of the MHEV. The SOC of the 48 V battery is balanced in the WLTP cycle. The total energy charged to the 48 V battery is 378 Wh, of which 82% comes from the regeneration pattern. The total energy discharged from the 48 V battery is 355 Wh, of which 85% is consumed by the load shift pattern (BSG neutral state and Discharging state). The fuel consumption of the MHEV is reduced by 7.9% compared with the conventional vehicle in the WLTP cycle. The start-stop, BSG neutral, and torque interventions with BSG save fuel by 3.8%, 0.9%, and 0.5% respectively. The other hybrid functions save fuel by 2.7%.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"76 8","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139454495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/16878132231220353
M. Gharib, Ali Heydari, Mohammad Reza Salehi Kolahi
Towing cables are playing a key role in maneuverability of moving or submerged vessels and the supporting vehicles in the ocean. This investigation evaluates the tension strength of the various parts of the marine towing cable and its geometric form under various operating conditions. Thus, the governing equations of the problem are introduced and analyzed first, followed by an examination of the method of solving the problem. We evaluate the cable’s static and dynamic behavior under different operating conditions using a continuous cable method. Then, we introduce and analyze the governing equations of the problem. The static mode comprises three operating conditions: a two-dimensional mode for constant vessel length, a two-dimensional mode for constant hydrophone depth, and a three-dimensional mode for different vessel motion and seawater directions. Dynamic mode operating conditions include vessel acceleration, vessel rotation, and cable tightening. The results show that, if the velocity of the seawater flow is zero, changing the angle of the vessel motion has little effect on the tension force of the cable-array and the length of the cable in the steady-state. It is also found that assuming a constant depth of the cable-array, the maximum tension force of the cable will increase to almost 35 times. However, if the length of the cable-array remains constant, the maximum tension force of the cable increases by around 13 times as the vessel’s speed increases by 5 times.
{"title":"Modeling and analysis of static and dynamic behavior of marine towed cable-array system based on the vessel motion","authors":"M. Gharib, Ali Heydari, Mohammad Reza Salehi Kolahi","doi":"10.1177/16878132231220353","DOIUrl":"https://doi.org/10.1177/16878132231220353","url":null,"abstract":"Towing cables are playing a key role in maneuverability of moving or submerged vessels and the supporting vehicles in the ocean. This investigation evaluates the tension strength of the various parts of the marine towing cable and its geometric form under various operating conditions. Thus, the governing equations of the problem are introduced and analyzed first, followed by an examination of the method of solving the problem. We evaluate the cable’s static and dynamic behavior under different operating conditions using a continuous cable method. Then, we introduce and analyze the governing equations of the problem. The static mode comprises three operating conditions: a two-dimensional mode for constant vessel length, a two-dimensional mode for constant hydrophone depth, and a three-dimensional mode for different vessel motion and seawater directions. Dynamic mode operating conditions include vessel acceleration, vessel rotation, and cable tightening. The results show that, if the velocity of the seawater flow is zero, changing the angle of the vessel motion has little effect on the tension force of the cable-array and the length of the cable in the steady-state. It is also found that assuming a constant depth of the cable-array, the maximum tension force of the cable will increase to almost 35 times. However, if the length of the cable-array remains constant, the maximum tension force of the cable increases by around 13 times as the vessel’s speed increases by 5 times.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"32 2","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139455018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1177/16878132231224577
Mingming Wang, Weiyuan Wang, Qiuhong Li
In this paper, a series of leaf-like piezoelectric elements are proposed by using laminated structure of polypropylene (PP) and Polyvinylidene fluoride (PVDF) film to collect wind energy through vortex induced vibration. Topology optimization based on solid isotropic material with penalization method is employed in seeking optimal configurations of the elements. The PP and PVDF layer were set as optimization variables respectively to obtain topological layouts that would be equivalent to maximizes the overall strain energy as the objective function. Four simple shapes of piezoelectric elements with different topological configurations are manufactured and tested in wind tunnel to estimate the energy harvesting capabilities. The experimental results show that the reinforcement optimized long trapezoid model has the highest open-circuit output voltage of 4.01 V and output power of 6.125 μW at the wind speed of 12 m/s. For the optimization of piezoelectric materials, the short trapezoid model can reach the open circuit output voltage of 2.061 V and output power of 1.158 μW. It indicated that the topology optimization can indeed improve the energy harvesting efficiency of the piezoelectric element. However, this method is not universal at present, which means that the external shape of the model will influence the performance of the relevant optimization results.
本文利用聚丙烯(PP)和聚偏氟乙烯(PVDF)薄膜的层压结构,提出了一系列叶状压电元件,通过涡流诱导振动收集风能。在寻求元件的最佳配置时,采用了基于固体各向同性材料的拓扑优化和惩罚法。将 PP 层和 PVDF 层分别设置为优化变量,以获得等效于最大化整体应变能的拓扑布局作为目标函数。制造了四种具有不同拓扑结构的简单形状的压电元件,并在风洞中进行了测试,以评估能量收集能力。实验结果表明,经过加固优化的长梯形模型在风速为 12 m/s 时具有最高的开路输出电压 4.01 V 和输出功率 6.125 μW。对于压电材料的优化,短梯形模型的开路输出电压可达 2.061 V,输出功率为 1.158 μW。这表明拓扑优化确实可以提高压电元件的能量收集效率。然而,这种方法目前并不通用,这意味着模型的外部形状会影响相关优化结果的性能。
{"title":"Structural optimization of laminated leaf-like piezoelectric wind energy harvesters based on topological method","authors":"Mingming Wang, Weiyuan Wang, Qiuhong Li","doi":"10.1177/16878132231224577","DOIUrl":"https://doi.org/10.1177/16878132231224577","url":null,"abstract":"In this paper, a series of leaf-like piezoelectric elements are proposed by using laminated structure of polypropylene (PP) and Polyvinylidene fluoride (PVDF) film to collect wind energy through vortex induced vibration. Topology optimization based on solid isotropic material with penalization method is employed in seeking optimal configurations of the elements. The PP and PVDF layer were set as optimization variables respectively to obtain topological layouts that would be equivalent to maximizes the overall strain energy as the objective function. Four simple shapes of piezoelectric elements with different topological configurations are manufactured and tested in wind tunnel to estimate the energy harvesting capabilities. The experimental results show that the reinforcement optimized long trapezoid model has the highest open-circuit output voltage of 4.01 V and output power of 6.125 μW at the wind speed of 12 m/s. For the optimization of piezoelectric materials, the short trapezoid model can reach the open circuit output voltage of 2.061 V and output power of 1.158 μW. It indicated that the topology optimization can indeed improve the energy harvesting efficiency of the piezoelectric element. However, this method is not universal at present, which means that the external shape of the model will influence the performance of the relevant optimization results.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"21 9","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139455244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1177/16878132231200483
Shiyuan Qi, Yunchao Guan, Yang Liu, Yiqiang Zhang, Guangbin Yu
The meshing process includes high-speed impact between the teeth. The vibration and noise in the gear transmission become prominent owing to the backlash between gears. Currently, the concentrated mass model is primarily used to analyse the vibration and noise mechanism of gear transmission, and it is difficult to effectively explain high-speed gear collision. In this study, an improved impact vibration model was applied to the meshing state of a high-speed gear. The gear transmission was simplified as a collision vibration system with absolute and traversable boundaries, and the piecewise-smooth dynamics model of the gear system is established. A mapping dynamic analysis method was then used to describe the impact and meshing boundary of gears. The impact-meshing situation of the gear system was observed, and the vibration response of the system under different speeds and loads was analysed using numerical simulation. The results revealed that the main source of the gear vibration was the meshing frequency of a gear pair. The resonance generated by the modulation of the rotation and meshing is the main reason for the long-term impact-meshing phenomenon of the gear transmission system. The results of this study are of great significance as they reveal the vibration characteristics of a high-speed gear transmission system.
{"title":"Impact-meshing vibration characteristics of high-speed gear systems with Backlash","authors":"Shiyuan Qi, Yunchao Guan, Yang Liu, Yiqiang Zhang, Guangbin Yu","doi":"10.1177/16878132231200483","DOIUrl":"https://doi.org/10.1177/16878132231200483","url":null,"abstract":"The meshing process includes high-speed impact between the teeth. The vibration and noise in the gear transmission become prominent owing to the backlash between gears. Currently, the concentrated mass model is primarily used to analyse the vibration and noise mechanism of gear transmission, and it is difficult to effectively explain high-speed gear collision. In this study, an improved impact vibration model was applied to the meshing state of a high-speed gear. The gear transmission was simplified as a collision vibration system with absolute and traversable boundaries, and the piecewise-smooth dynamics model of the gear system is established. A mapping dynamic analysis method was then used to describe the impact and meshing boundary of gears. The impact-meshing situation of the gear system was observed, and the vibration response of the system under different speeds and loads was analysed using numerical simulation. The results revealed that the main source of the gear vibration was the meshing frequency of a gear pair. The resonance generated by the modulation of the rotation and meshing is the main reason for the long-term impact-meshing phenomenon of the gear transmission system. The results of this study are of great significance as they reveal the vibration characteristics of a high-speed gear transmission system.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"76 3-4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1177/16878132231209875
Muhammad Asif Memon, Kavikumar Jacob, Hazoor Bux Lanjwani, Umair Khan, El-Sayed M Sherif, Ioan Pop
This article explores heat transfer characteristics of magnetohydrodynamics water-base silver (Ag) and iron oxide (Fe 3 O 4 ) hybrid nanomaterials flow in a Darcy-Forchheimer porous medium induced by a stretching/shrinking surface with impacts of heat sink/source. Moreover, thermal radiation effects and the slip boundary conditions are also incorporated in the given problem. Governing partial differential equations (PDEs) are first altered into the ordinary differential equations (ODEs) using suitable similarity transformations. These achieved ODEs are solved by the well-known shooting technique in Maple software to get the required numerical solutions for the variation in different physical parameters. Here, the numerical findings show duality in solutions in case of stretching/shrinking parameter over different ranges of the comprised distinguished parameters. In this regard, the stability analysis is done and the first solution is found stable and physically acceptable, while the second one unstable and physically infeasible. Besides, the skin friction increases for the case of shrinking but it decreases for case of stretching parameter due to the greater impacts of the mass transfer parameter while the heat transfer phenomenon upsurges for the case of shrinking parameter. Moreover, the skin friction, and the heat transfer rise with variation of the suction parameters when the quantity of solid nanoparticles volume fraction is increased.
{"title":"Thermal analysis for hydromagnetic flow of Darcy-Forchheimer hybrid nanofluid with velocity and temperature slip effects: Scrutinization of stability and dual solutions","authors":"Muhammad Asif Memon, Kavikumar Jacob, Hazoor Bux Lanjwani, Umair Khan, El-Sayed M Sherif, Ioan Pop","doi":"10.1177/16878132231209875","DOIUrl":"https://doi.org/10.1177/16878132231209875","url":null,"abstract":"This article explores heat transfer characteristics of magnetohydrodynamics water-base silver (Ag) and iron oxide (Fe 3 O 4 ) hybrid nanomaterials flow in a Darcy-Forchheimer porous medium induced by a stretching/shrinking surface with impacts of heat sink/source. Moreover, thermal radiation effects and the slip boundary conditions are also incorporated in the given problem. Governing partial differential equations (PDEs) are first altered into the ordinary differential equations (ODEs) using suitable similarity transformations. These achieved ODEs are solved by the well-known shooting technique in Maple software to get the required numerical solutions for the variation in different physical parameters. Here, the numerical findings show duality in solutions in case of stretching/shrinking parameter over different ranges of the comprised distinguished parameters. In this regard, the stability analysis is done and the first solution is found stable and physically acceptable, while the second one unstable and physically infeasible. Besides, the skin friction increases for the case of shrinking but it decreases for case of stretching parameter due to the greater impacts of the mass transfer parameter while the heat transfer phenomenon upsurges for the case of shrinking parameter. Moreover, the skin friction, and the heat transfer rise with variation of the suction parameters when the quantity of solid nanoparticles volume fraction is increased.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"29 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135714927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1177/16878132231201297
Ana P Valerga Puerta, Gema Fernandez-Sanz, Fermin Bañon, Severo R Fernandez-Vidal
The durability and degradation of polymers is very important for product design in terms of material choice. The degradation behavior of two biodegradable thermoplastic materials manufactured by 3D printing, Enviro ABS and PLA, was studied. The action of the sun and seawater was simulated to find out how they affect the properties of these materials over a period of 8 weeks. The yield strength, maximum elongation, ultimate tensile strength, and microscopy were analyzed, as well as dimensions and mass changes. These biodegradable materials were studied to conclude whether there is an environmentally friendly alternative to traditional ABS, being one of the most widely used petroleum-based plastics in industry and in fused deposition modeling (FDM) or fused filament fabrication (FFF). PLA showed a weight loss and increase in ultimate tensile stress on degradation by sunlight and a prolonged decrease in ultimate tensile stress on degradation by seawater due to humidity absorption. In contrast, Enviro ABS does not show a noticeable difference between the beginning and the end of the test, which leads to the conclusion that Enviro ABS is a good alternative to conventional ABS without forgetting the environmental effects that are currently involved in the manufacture, recycling and composting of this type of material.
{"title":"Biodegradable materials with FDM technology under the aging effect of solar and saltwater exposure","authors":"Ana P Valerga Puerta, Gema Fernandez-Sanz, Fermin Bañon, Severo R Fernandez-Vidal","doi":"10.1177/16878132231201297","DOIUrl":"https://doi.org/10.1177/16878132231201297","url":null,"abstract":"The durability and degradation of polymers is very important for product design in terms of material choice. The degradation behavior of two biodegradable thermoplastic materials manufactured by 3D printing, Enviro ABS and PLA, was studied. The action of the sun and seawater was simulated to find out how they affect the properties of these materials over a period of 8 weeks. The yield strength, maximum elongation, ultimate tensile strength, and microscopy were analyzed, as well as dimensions and mass changes. These biodegradable materials were studied to conclude whether there is an environmentally friendly alternative to traditional ABS, being one of the most widely used petroleum-based plastics in industry and in fused deposition modeling (FDM) or fused filament fabrication (FFF). PLA showed a weight loss and increase in ultimate tensile stress on degradation by sunlight and a prolonged decrease in ultimate tensile stress on degradation by seawater due to humidity absorption. In contrast, Enviro ABS does not show a noticeable difference between the beginning and the end of the test, which leads to the conclusion that Enviro ABS is a good alternative to conventional ABS without forgetting the environmental effects that are currently involved in the manufacture, recycling and composting of this type of material.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"74 11-12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.1177/16878132231209669
Hui Long, Weihui Wu, Di Wang, Linqing Liu
In order to manufacture non-ferromagnetic heterogeneous material by Selective Laser Melting (SLM), it is necessary to solve the separation problem of non-ferromagnetic mixed powders after SLM forming. This research presents how to resolve this problem using TiNi/Ta mixed powders by ultrasonic vibration screening method and the analysis of SLM manufacturing experiment for non-ferromagnetic heterogeneous material. The purity of TiNi and Ta powders after separation could reach 99.7087%wt% and 98.8501wt% respectively, which both reached a relatively high purity. A TiNi alloy sample with Ta coating and TiNi/Ta gradient transition was manufactured successfully by SLM. The material interface of the sample achieves metallurgical bonding, and the color of the sample profile shows a gradient transition. The EDS analysis shows that the material composition changes from Ta ->Ta/TiNi gradient ->TiNi from surface to inside of the sample. The Ta coating contains over 92.5wt% Ta, and the TiNi matrix contains over 98.69wt% TiNi. Along the powder laying direction, it is difficult to clean the small powder near the solid-powder or solid-solid interfaces made of two different materials, which causes micro polluted areas near the interfaces. This study also provides a new method for integrated manufacturing of TiNi alloy part with Ta coating.
{"title":"Experimental investigation on selective laser melting additive manufacturing of non-ferromagnetic heterogeneous material based on TiNi alloy with Ta coating","authors":"Hui Long, Weihui Wu, Di Wang, Linqing Liu","doi":"10.1177/16878132231209669","DOIUrl":"https://doi.org/10.1177/16878132231209669","url":null,"abstract":"In order to manufacture non-ferromagnetic heterogeneous material by Selective Laser Melting (SLM), it is necessary to solve the separation problem of non-ferromagnetic mixed powders after SLM forming. This research presents how to resolve this problem using TiNi/Ta mixed powders by ultrasonic vibration screening method and the analysis of SLM manufacturing experiment for non-ferromagnetic heterogeneous material. The purity of TiNi and Ta powders after separation could reach 99.7087%wt% and 98.8501wt% respectively, which both reached a relatively high purity. A TiNi alloy sample with Ta coating and TiNi/Ta gradient transition was manufactured successfully by SLM. The material interface of the sample achieves metallurgical bonding, and the color of the sample profile shows a gradient transition. The EDS analysis shows that the material composition changes from Ta ->Ta/TiNi gradient ->TiNi from surface to inside of the sample. The Ta coating contains over 92.5wt% Ta, and the TiNi matrix contains over 98.69wt% TiNi. Along the powder laying direction, it is difficult to clean the small powder near the solid-powder or solid-solid interfaces made of two different materials, which causes micro polluted areas near the interfaces. This study also provides a new method for integrated manufacturing of TiNi alloy part with Ta coating.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"22 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135615373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The application of hardened aluminum alloys on the drive elements must be safe and reliable, T6 treatment is often used to improve their mechanical properties and dimensional stability. However, the impact of T6 treatment on operating life is not easy to evaluate. Hence, the effects of T6 treatment on the wear of aluminum 5083/6061/7075 were studied by a steel ball on disk tester. The results showed that T6 treatment tended to reduce the values of the friction coefficient about 9%. Moreover, T6 treatment had no significant effect on the frequency of the change of the friction coefficient of 5083 and 6061, but significantly affected that of 7075. T6 treatment can also reduce the size of wear particles about 16%. Based on the results, the wear mechanisms of aluminum 5083/6061/7075 with and without T6 treatment are described in this paper.
{"title":"Wear mechanisms of aluminum 5083/6061/7075 with and without T6 treatment","authors":"Yuh-Ping Chang, Chien-Te Liu, Li-Ming Chu, Huann-Ming Chou","doi":"10.1177/16878132231201000","DOIUrl":"https://doi.org/10.1177/16878132231201000","url":null,"abstract":"The application of hardened aluminum alloys on the drive elements must be safe and reliable, T6 treatment is often used to improve their mechanical properties and dimensional stability. However, the impact of T6 treatment on operating life is not easy to evaluate. Hence, the effects of T6 treatment on the wear of aluminum 5083/6061/7075 were studied by a steel ball on disk tester. The results showed that T6 treatment tended to reduce the values of the friction coefficient about 9%. Moreover, T6 treatment had no significant effect on the frequency of the change of the friction coefficient of 5083 and 6061, but significantly affected that of 7075. T6 treatment can also reduce the size of wear particles about 16%. Based on the results, the wear mechanisms of aluminum 5083/6061/7075 with and without T6 treatment are described in this paper.","PeriodicalId":49110,"journal":{"name":"Advances in Mechanical Engineering","volume":"24 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135765242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}