{"title":"Experimental Study on Ship Squat in Intermediate Channel","authors":"Liji Long, Jilun Miao, Wanxing Zhao, Chenglin Huang","doi":"10.4271/09-12-01-0005","DOIUrl":null,"url":null,"abstract":"<div>The sinking and trimming of the hull in the channel would directly affect the handling and navigation safety of the ship. In view of the ship sinking, a series of empirical formulas to estimate the subsidence have been put forward for vessel in spacious shallow water areas. However, most of the equations are based on seagoing vessels. They are not suitable for inland ships with small scales, shallow drafts, and narrow navigation width. Till now, research on ship squat in intermediate channel has not yielded more practical results. Here, a generalized physical model is used to study the sinking of 500t class ships in restricted intermediate channel under different channel widths, water depths, and speeds. The main factors affecting the squat are analyzed, the empirical relation is compared with the measured squat. The <i>Barrass</i> equation is modified, and the calculation relation of the settlement suitable for inland river ships is proposed. The correlation coefficient <i>R</i><sup>2</sup> of the modified equation is 0.818, the standard error is 0.046, and the maximum error is 0.14 m, which can be used as a reference for inland waterway design research.</div>","PeriodicalId":42847,"journal":{"name":"SAE International Journal of Transportation Safety","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Transportation Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/09-12-01-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The sinking and trimming of the hull in the channel would directly affect the handling and navigation safety of the ship. In view of the ship sinking, a series of empirical formulas to estimate the subsidence have been put forward for vessel in spacious shallow water areas. However, most of the equations are based on seagoing vessels. They are not suitable for inland ships with small scales, shallow drafts, and narrow navigation width. Till now, research on ship squat in intermediate channel has not yielded more practical results. Here, a generalized physical model is used to study the sinking of 500t class ships in restricted intermediate channel under different channel widths, water depths, and speeds. The main factors affecting the squat are analyzed, the empirical relation is compared with the measured squat. The Barrass equation is modified, and the calculation relation of the settlement suitable for inland river ships is proposed. The correlation coefficient R2 of the modified equation is 0.818, the standard error is 0.046, and the maximum error is 0.14 m, which can be used as a reference for inland waterway design research.