Phyto-assisted synthesis of magnetic NiFe2O4 nanocomposite using the Pulicaria gnaphalodes methanolic extract for the efficient removal of an antibiotic from the aqueous solution: a study of equilibrium, kinetics, isotherms, and thermodynamics
Elham Derakhshani, Ali Naghizadeh, Sobhan Mortazavi-Derazkola
{"title":"Phyto-assisted synthesis of magnetic NiFe2O4 nanocomposite using the <i>Pulicaria gnaphalodes</i> methanolic extract for the efficient removal of an antibiotic from the aqueous solution: a study of equilibrium, kinetics, isotherms, and thermodynamics","authors":"Elham Derakhshani, Ali Naghizadeh, Sobhan Mortazavi-Derazkola","doi":"10.2166/aqua.2023.117","DOIUrl":null,"url":null,"abstract":"Abstract In this research, the magnetic NiFe2O4 nanocomposite was synthesized using Pulicaria gnaphalodes methanolic extract and applied to remove penicillin G from aqueous solutions. The results of field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, VSM, and energy-dispersive spectroscopy-mapping analyses showed that this nanocomposite was well synthesized with a size of approximately 50–70 nm. The maximum adsorption capacity of the magnetic NiFe2O4 nanocomposite was 22.95 mg/g under optimal conditions. In addition, the experimental data of penicillin G adsorption by the magnetic NiFe2O4 nanocomposite showed that ΔH and ΔS values were positive and ΔG was negative and were following the Temkin isotherm model with R2 = 0.99 and follows the pseudo-second-order kinetic model.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":" 22","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2023.117","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this research, the magnetic NiFe2O4 nanocomposite was synthesized using Pulicaria gnaphalodes methanolic extract and applied to remove penicillin G from aqueous solutions. The results of field emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared, VSM, and energy-dispersive spectroscopy-mapping analyses showed that this nanocomposite was well synthesized with a size of approximately 50–70 nm. The maximum adsorption capacity of the magnetic NiFe2O4 nanocomposite was 22.95 mg/g under optimal conditions. In addition, the experimental data of penicillin G adsorption by the magnetic NiFe2O4 nanocomposite showed that ΔH and ΔS values were positive and ΔG was negative and were following the Temkin isotherm model with R2 = 0.99 and follows the pseudo-second-order kinetic model.