Structured Population Models on Polish Spaces: A Unified Approach including Graphs, Riemannian Manifolds and Measure Spaces to Describe Dynamics of Heterogeneous Populations
Christian Dull, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski
{"title":"Structured Population Models on Polish Spaces: A Unified Approach including Graphs, Riemannian Manifolds and Measure Spaces to Describe Dynamics of Heterogeneous Populations","authors":"Christian Dull, Piotr Gwiazda, Anna Marciniak-Czochra, Jakub Skrzeczkowski","doi":"10.1142/s0218202524400037","DOIUrl":null,"url":null,"abstract":"This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation processes. The diverse applications pose a common challenge to mathematicians due to the multiscale nature of the structures that underlie the system’s self-organization and control. Similar abstract mathematical problems arise when formulating problems in the language of measure evolution on a multi-faceted state space. Motivated by these observations, we propose a general mathematical framework for nonlinear structured population models on abstract metric spaces, which are only assumed to be separable and complete. We exploit the structure of the space of non-negative Radon measures with the dual bounded Lipschitz distance (flat metric), which is a generalization of the Wasserstein distance, capable of addressing non-conservative problems. The formulation of models on general metric spaces allows considering infinite-dimensional state spaces or graphs and coupling discrete and continuous state transitions. This opens up exciting possibilities for modeling single-cell data, crowd dynamics or coagulation-fragmentation processes.","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":" 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524400037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a mathematical framework for modeling the dynamics of heterogeneous populations. Models describing local and non-local growth and transport processes appear in a variety of applications, such as crowd dynamics, tissue regeneration, cancer development and coagulation-fragmentation processes. The diverse applications pose a common challenge to mathematicians due to the multiscale nature of the structures that underlie the system’s self-organization and control. Similar abstract mathematical problems arise when formulating problems in the language of measure evolution on a multi-faceted state space. Motivated by these observations, we propose a general mathematical framework for nonlinear structured population models on abstract metric spaces, which are only assumed to be separable and complete. We exploit the structure of the space of non-negative Radon measures with the dual bounded Lipschitz distance (flat metric), which is a generalization of the Wasserstein distance, capable of addressing non-conservative problems. The formulation of models on general metric spaces allows considering infinite-dimensional state spaces or graphs and coupling discrete and continuous state transitions. This opens up exciting possibilities for modeling single-cell data, crowd dynamics or coagulation-fragmentation processes.