Abdolreza Amiri, Gabriel R. Barrenechea, Tristan Pryer
{"title":"A nodally bound-preserving finite element method for reaction–convection–diffusion equations","authors":"Abdolreza Amiri, Gabriel R. Barrenechea, Tristan Pryer","doi":"10.1142/s0218202524500283","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel approach to approximate a broad range of reaction–convection–diffusion equations using conforming finite element methods while providing a discrete solution respecting the physical bounds given by the underlying differential equation. The main result of this work demonstrates that the numerical solution achieves an accuracy of <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> in the energy norm, where <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> represents the underlying polynomial degree. To validate the approach, a series of numerical experiments had been conducted for various problem instances. Comparisons with the linear continuous interior penalty stabilised method, and the algebraic flux-correction scheme (for the piecewise linear finite element case) have been carried out, where we can observe the favorable performance of the current approach.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel approach to approximate a broad range of reaction–convection–diffusion equations using conforming finite element methods while providing a discrete solution respecting the physical bounds given by the underlying differential equation. The main result of this work demonstrates that the numerical solution achieves an accuracy of in the energy norm, where represents the underlying polynomial degree. To validate the approach, a series of numerical experiments had been conducted for various problem instances. Comparisons with the linear continuous interior penalty stabilised method, and the algebraic flux-correction scheme (for the piecewise linear finite element case) have been carried out, where we can observe the favorable performance of the current approach.
本文介绍了一种新方法,利用符合有限元方法逼近各种反应-对流-扩散方程,同时提供离散解,尊重基础微分方程给出的物理边界。这项工作的主要结果表明,数值解在能量规范中达到了 O(hk)的精度,其中 k 代表底层多项式阶数。为了验证该方法,针对各种问题实例进行了一系列数值实验。与线性连续内部惩罚稳定方法和代数通量校正方案(用于片断线性有限元情况)进行了比较,我们可以观察到当前方法的良好性能。