An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-09-14 DOI:10.1016/j.hcc.2023.100153
Abhijit J. Patil , Ramesh Shelke
{"title":"An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility","authors":"Abhijit J. Patil ,&nbsp;Ramesh Shelke","doi":"10.1016/j.hcc.2023.100153","DOIUrl":null,"url":null,"abstract":"<div><p>Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection. Most of the traditional extracting processes in audio watermarking have some restrictions due to low reliability to various attacks. Hence, a deep learning-based audio watermarking system is proposed in this research to overcome the restriction in the traditional methods. The implication of the research relies on enhancing the performance of the watermarking system using the Discrete Wavelet Transform (DWT) and the optimized deep learning technique. The selection of optimal embedding location is the research contribution that is carried out by the deep convolutional neural network (DCNN). The hyperparameter tuning is performed by the so-called search location optimization, which minimizes the errors in the classifier. The experimental result reveals that the proposed digital audio watermarking system provides better robustness and performance in terms of Bit Error Rate (BER), Mean Square Error (MSE), and Signal-to-noise ratio. The BER, MSE, and SNR of the proposed audio watermarking model without the noise are 0.082, 0.099, and 45.363 respectively, which is found to be better performance than the existing watermarking models.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"3 4","pages":"Article 100153"},"PeriodicalIF":3.2000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266729522300051X/pdfft?md5=eb13242a3c2d8236c8e27be37944fea5&pid=1-s2.0-S266729522300051X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266729522300051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Watermarking is the advanced technology utilized to secure digital data by integrating ownership or copyright protection. Most of the traditional extracting processes in audio watermarking have some restrictions due to low reliability to various attacks. Hence, a deep learning-based audio watermarking system is proposed in this research to overcome the restriction in the traditional methods. The implication of the research relies on enhancing the performance of the watermarking system using the Discrete Wavelet Transform (DWT) and the optimized deep learning technique. The selection of optimal embedding location is the research contribution that is carried out by the deep convolutional neural network (DCNN). The hyperparameter tuning is performed by the so-called search location optimization, which minimizes the errors in the classifier. The experimental result reveals that the proposed digital audio watermarking system provides better robustness and performance in terms of Bit Error Rate (BER), Mean Square Error (MSE), and Signal-to-noise ratio. The BER, MSE, and SNR of the proposed audio watermarking model without the noise are 0.082, 0.099, and 45.363 respectively, which is found to be better performance than the existing watermarking models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为了提高数字音频水印的鲁棒性和不可感知性,采用深度卷积神经网络和搜索位置优化算法进行了有效的数字音频水印
水印是一种先进的技术,通过整合所有权或版权保护来保护数字数据。传统的音频水印提取方法对各种攻击的可靠性较低,存在一定的局限性。因此,本研究提出了一种基于深度学习的音频水印系统,以克服传统方法的局限性。该研究的意义在于利用离散小波变换(DWT)和优化的深度学习技术增强水印系统的性能。最优嵌入位置的选择是深度卷积神经网络(deep convolutional neural network, DCNN)的研究成果。超参数调优是通过所谓的搜索位置优化来执行的,这将使分类器中的错误最小化。实验结果表明,所提出的数字音频水印系统在误码率(BER)、均方误差(MSE)和信噪比方面具有较好的鲁棒性和性能。无噪声音频水印模型的误码率为0.082,MSE为0.099,信噪比为45.363,性能优于现有的水印模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153] On Building Automation System security SoK: Decentralized Storage Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1