Building Automation Systems (BASs) are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control, HVAC systems, entry systems, and lighting controls. Many BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS protocol. In this paper, we provide a comprehensive, up-to-date survey on BASs and attacks against seven BAS protocols including BACnet, EnOcean, KNX, LonWorks, Modbus, ZigBee, and Z-Wave. Holistic studies of secure BAS protocols are also presented, covering BACnet Secure Connect, KNX Data Secure, KNX/IP Secure, ModBus/TCP Security, EnOcean High Security and Z-Wave Plus. LonWorks and ZigBee do not have security extensions. We point out how these security protocols improve the security of the BAS and what issues remain. A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of it. We seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
Decentralized Storage Networks (DSNs) represent a paradigm shift in data storage methodology, distributing and housing data across multiple network nodes rather than relying on a centralized server or data center architecture. The fundamental objective of DSNs is to enhance security, reinforce reliability, and mitigate censorship risks by eliminating a single point of failure. Leveraging blockchain technology for functions such as access control, ownership validation, and transaction facilitation, DSN initiatives aim to provide users with a robust and secure alternative to traditional centralized storage solutions. This paper conducts a comprehensive analysis of the developmental trajectory of DSNs, focusing on key components such as Proof of Storage protocols, consensus algorithms, and incentive mechanisms. Additionally, the study explores recent optimization tactics, encountered challenges, and potential avenues for future research, thereby offering insights into the ongoing evolution and advancement within the DSN domain.
Pervasive Computing has become more personal with the widespread adoption of the Internet of Things (IoT) in our day-to-day lives. The emerging domain that encompasses devices, sensors, storage, and computing of personal use and surroundings leads to Personal IoT (PIoT). PIoT offers users high levels of personalization, automation, and convenience. This proliferation of PIoT technology has extended into society, social engagement, and the interconnectivity of PIoT objects, resulting in the emergence of the Social Internet of Things (SIoT). The combination of PIoT and SIoT has spurred the need for autonomous learning, comprehension, and understanding of both the physical and social worlds. Current research on PIoT is dedicated to enabling seamless communication among devices, striking a balance between observation, sensing, and perceiving the extended physical and social environment, and facilitating information exchange. Furthermore, the virtualization of independent learning from the social environment has given rise to Artificial Social Intelligence (ASI) in PIoT systems. However, autonomous data communication between different nodes within a social setup presents various resource management challenges that require careful consideration. This paper provides a comprehensive review of the evolving domains of PIoT, SIoT, and ASI. Moreover, the paper offers insightful modeling and a case study exploring the role of PIoT in post-COVID scenarios. This study contributes to a deeper understanding of the intricacies of PIoT and its various dimensions, paving the way for further advancements in this transformative field.