Bhavya Joshi, Ahmed M. E. Khalil, Shaowei Zhang, Fayyaz A. Memon
{"title":"Investigating the Potential of Greener-Porous Graphene for the Treatment of Organic Pollutants in Wastewater","authors":"Bhavya Joshi, Ahmed M. E. Khalil, Shaowei Zhang, Fayyaz A. Memon","doi":"10.3390/c9040097","DOIUrl":null,"url":null,"abstract":"Pharmaceuticals have emerged as a new class of ecological pollutants and have majorly contributed to harmful effects on the environment and human health. The presence of these pharmaceuticals in wastewater treatment plants, ground, and seawater has been reported widely. Organic dyes and other organic contaminants which are being considered as emerging contaminants are now in the race among the top organic pollutants that need effective treatment. Removal of these contaminants via green adsorbents has become an essential requirement towards a green and cleaner environment. Herein, we report the efficacy of the novel greener porous graphene obtained via the near-green synthesis method as an adsorbent material for treating seven organic pollutants: Methyl orange, Methyl red, Rhodamine-B, Ciprofloxacin, Atenolol, Ibuprofen, and Carbamazepine. Batch tests were conducted to investigate the effect of adsorption time and varying adsorbent dosages. The obtained greener porous graphene showed fast kinetics, which was determined to be guided by pseudo second-order kinetics and the maximum pollutant removal efficiency (>80%) was seen at a high adsorbent dosage (2 mL injected from a 5 g/L solution). Furthermore, the nonlinear adsorption modeling confirmed that the greener porous graphene followed the Langmuir model for the dye rhodamine-B sorption and the Freundlich model for all the other six contaminants. This greener porous graphene can be considered an effective adsorbent for the removal of organic pollutants in wastewater.","PeriodicalId":9397,"journal":{"name":"C","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c9040097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceuticals have emerged as a new class of ecological pollutants and have majorly contributed to harmful effects on the environment and human health. The presence of these pharmaceuticals in wastewater treatment plants, ground, and seawater has been reported widely. Organic dyes and other organic contaminants which are being considered as emerging contaminants are now in the race among the top organic pollutants that need effective treatment. Removal of these contaminants via green adsorbents has become an essential requirement towards a green and cleaner environment. Herein, we report the efficacy of the novel greener porous graphene obtained via the near-green synthesis method as an adsorbent material for treating seven organic pollutants: Methyl orange, Methyl red, Rhodamine-B, Ciprofloxacin, Atenolol, Ibuprofen, and Carbamazepine. Batch tests were conducted to investigate the effect of adsorption time and varying adsorbent dosages. The obtained greener porous graphene showed fast kinetics, which was determined to be guided by pseudo second-order kinetics and the maximum pollutant removal efficiency (>80%) was seen at a high adsorbent dosage (2 mL injected from a 5 g/L solution). Furthermore, the nonlinear adsorption modeling confirmed that the greener porous graphene followed the Langmuir model for the dye rhodamine-B sorption and the Freundlich model for all the other six contaminants. This greener porous graphene can be considered an effective adsorbent for the removal of organic pollutants in wastewater.