Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory

C Pub Date : 2024-07-14 DOI:10.3390/c10030063
D. Boukhvalov, Vladimir Yu. Osipov, A. Serikkanov, Kazuyuki Takai
{"title":"Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory","authors":"D. Boukhvalov, Vladimir Yu. Osipov, A. Serikkanov, Kazuyuki Takai","doi":"10.3390/c10030063","DOIUrl":null,"url":null,"abstract":"In this study, we conducted a theoretical simulation to compare the effects of various factors on the atomic and electronic structures and the magnetic properties of copper and gadolinium ions bonded to carboxylated species of (111) diamond surfaces. It was experimentally found that in the temperature range above 120 K, the magnetic moments of chelated Gd3+ and Cu2+ equal 6.73 and 0.981 Bohr magnetons, respectively. In the temperature range from 12 to 2 K, these magnetic moments sharply decrease to 6.38 and 0.88 Bohr magnetons. Specifically, we examined the effects of the number of covalent adatom–diamond substrate bridges, coordination of water molecules, and shallow carbon-inherited spins in the substrate on the physical properties of the metal center. Our simulation predicted that increasing the number of bonds between the chelated metal ion and substrate while decreasing the number of coordinating water molecules corresponded to a decrease in the magnetic moment of metal ions in a metal–diamond system. This is due to the redistribution of the electron charge density in an asymmetric metal–diamond system. By comparing our theoretical results with experimental data, we proposed configurations involving one and, in a minor number of cases, two surface –COO− groups and maximum coordination of water molecules as the most realistic options for Cu- and Gd-complexes.","PeriodicalId":9397,"journal":{"name":"C","volume":"35 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/c10030063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we conducted a theoretical simulation to compare the effects of various factors on the atomic and electronic structures and the magnetic properties of copper and gadolinium ions bonded to carboxylated species of (111) diamond surfaces. It was experimentally found that in the temperature range above 120 K, the magnetic moments of chelated Gd3+ and Cu2+ equal 6.73 and 0.981 Bohr magnetons, respectively. In the temperature range from 12 to 2 K, these magnetic moments sharply decrease to 6.38 and 0.88 Bohr magnetons. Specifically, we examined the effects of the number of covalent adatom–diamond substrate bridges, coordination of water molecules, and shallow carbon-inherited spins in the substrate on the physical properties of the metal center. Our simulation predicted that increasing the number of bonds between the chelated metal ion and substrate while decreasing the number of coordinating water molecules corresponded to a decrease in the magnetic moment of metal ions in a metal–diamond system. This is due to the redistribution of the electron charge density in an asymmetric metal–diamond system. By comparing our theoretical results with experimental data, we proposed configurations involving one and, in a minor number of cases, two surface –COO− groups and maximum coordination of water molecules as the most realistic options for Cu- and Gd-complexes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示金属-纳米金刚石键的结构:实验与理论
在这项研究中,我们进行了理论模拟,比较了各种因素对(111)金刚石表面羧基化铜离子和钆离子的原子结构、电子结构和磁性能的影响。实验发现,在 120 K 以上的温度范围内,螯合 Gd3+ 和 Cu2+ 的磁矩分别等于 6.73 和 0.981 波尔磁子。在 12 至 2 K 的温度范围内,这些磁矩急剧下降至 6.38 和 0.88 玻尔磁子。具体来说,我们研究了共价金刚石-金刚石基底桥的数量、水分子的配位以及基底中的浅碳自旋对金属中心物理性质的影响。根据我们的模拟预测,增加螯合金属离子与基底之间的键数,同时减少配位水分子的数量,金属离子在金属-金刚石体系中的磁矩就会相应减小。这是由于不对称金属-金刚石体系中电子电荷密度的重新分布造成的。通过将我们的理论结果与实验数据进行比较,我们提出了涉及一个表面-COO-基团(少数情况下涉及两个表面-COO-基团)和最大配位水分子的构型,作为铜和钆络合物最现实的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
C
C
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of Ni@SiC/CNFs Composite and Its Microwave-Induced Catalytic Activity Novel Superhard Tetragonal Hybrid sp3/sp2 Carbon Allotropes Cx (x = 5, 6, 7): Crystal Chemistry and Ab Initio Studies Unveiling the Structure of Metal–Nanodiamonds Bonds: Experiment and Theory Photocatalytic N-Formylation of CO2 with Amines Catalyzed by Diethyltriamine Pentaacetic Acid Enhanced Adsorption of Arsenate from Contaminated Waters by Magnesium-, Zinc- or Calcium-Modified Biochar—Modeling and Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1