Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques

IF 4.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Quantum Machine Intelligence Pub Date : 2023-10-06 DOI:10.1007/s42484-023-00124-1
Medina Bandic, Carmen G. Almudever, Sebastian Feld
{"title":"Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques","authors":"Medina Bandic, Carmen G. Almudever, Sebastian Feld","doi":"10.1007/s42484-023-00124-1","DOIUrl":null,"url":null,"abstract":"Abstract To execute quantum circuits on a quantum processor, they must be modified to meet the physical constraints of the quantum device. This process, called quantum circuit mapping , results in a gate/circuit depth overhead that depends on both the circuit properties and the hardware constraints, being the limited qubit connectivity a crucial restriction. In this paper, we propose to extend the characterization of quantum circuits by including qubit interaction graph properties using graph theory-based metrics in addition to previously used circuit-describing parameters. This approach allows for an in-depth analysis and clustering of quantum circuits and a comparison of performance when run on different quantum processors, aiding in developing better mapping techniques. Our study reveals a correlation between interaction graph-based parameters and mapping performance metrics for various existing configurations of quantum devices. We also provide a comprehensive collection of quantum circuits and algorithms for benchmarking future compilation techniques and quantum devices.","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42484-023-00124-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract To execute quantum circuits on a quantum processor, they must be modified to meet the physical constraints of the quantum device. This process, called quantum circuit mapping , results in a gate/circuit depth overhead that depends on both the circuit properties and the hardware constraints, being the limited qubit connectivity a crucial restriction. In this paper, we propose to extend the characterization of quantum circuits by including qubit interaction graph properties using graph theory-based metrics in addition to previously used circuit-describing parameters. This approach allows for an in-depth analysis and clustering of quantum circuits and a comparison of performance when run on different quantum processors, aiding in developing better mapping techniques. Our study reveals a correlation between interaction graph-based parameters and mapping performance metrics for various existing configurations of quantum devices. We also provide a comprehensive collection of quantum circuits and algorithms for benchmarking future compilation techniques and quantum devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于交互图的量子基准表征改进量子电路映射技术
要在量子处理器上执行量子电路,必须对其进行修改以满足量子器件的物理约束。这个过程被称为量子电路映射,导致门/电路深度开销,这取决于电路属性和硬件约束,有限的量子比特连接是一个关键的限制。在本文中,我们建议通过使用基于图论的度量来扩展量子电路的表征,除了以前使用的电路描述参数之外,还包括量子比特相互作用图属性。这种方法允许对量子电路进行深入分析和聚类,并在不同量子处理器上运行时比较性能,有助于开发更好的映射技术。我们的研究揭示了基于交互图的参数与各种现有量子器件配置的映射性能指标之间的相关性。我们还提供了一个全面的量子电路和算法集合,用于对未来的编译技术和量子器件进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
4.20%
发文量
29
期刊最新文献
Analyzing the effectiveness of quantum annealing with meta-learning SoK: quantum computing methods for machine learning optimization Evaluation of VQC-LSTM for disability forecasting in multiple sclerosis using sequential multisequence MRI Leveraging Quantum Kernel Support Vector Machine for breast cancer diagnosis from Digital Breast Tomosynthesis images Iteration-Free quantum approximate optimization algorithm using neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1