{"title":"CCCD: Corner detection and curve reconstruction for improved 3D surface reconstruction from 2D medical images","authors":"MRIGANKA SARMAH, ARAMBAM NEELIMA","doi":"10.55730/1300-0632.4027","DOIUrl":null,"url":null,"abstract":": The conventional approach to creating 3D surfaces from 2D medical images is the marching cube algorithm, but it often results in rough surfaces. On the other hand, B-spline curves and nonuniform rational B-splines (NURBSs) offer a smoother alternative for 3D surface reconstruction. However, NURBSs use control points (CTPs) to define the object shape and corners play an important role in defining the boundary shape as well. Thus, in order to fill the research gap in applying corner detection (CD) methods to generate the most favorable CTPs, in this paper corner points are identified to predict organ shape. However, CTPs must be in ordered coordinate pairs. This ordering problem is resolved using curve reconstruction (CR) or chain code (CC) algorithms. Existing CR methods lead to issues like holes, while some chain codes have junction-induced errors that need preprocessing. To address the above issues, a new graph neural network (GNN)-based approach named curvature and chain code-based corner detection (CCCD) is introduced that not only orders the CTPs but also removes junction errors. The goal is to improve accuracy and reliability in generating smooth surfaces. The paper fuses well-known CD methods with a curve generation technique and compares these alternative fused methods with CCCD. CCCD is also compared against other curve reconstruction techniques to establish its superiority. For validation, CCCD’s accuracy in predicting boundaries is compared with deep learning models like Polar U-Net, KiU-Net 3D, and HdenseUnet, achieving an impressive Dice score of 98.49%, even with only 39.13% boundary","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0632.4027","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
: The conventional approach to creating 3D surfaces from 2D medical images is the marching cube algorithm, but it often results in rough surfaces. On the other hand, B-spline curves and nonuniform rational B-splines (NURBSs) offer a smoother alternative for 3D surface reconstruction. However, NURBSs use control points (CTPs) to define the object shape and corners play an important role in defining the boundary shape as well. Thus, in order to fill the research gap in applying corner detection (CD) methods to generate the most favorable CTPs, in this paper corner points are identified to predict organ shape. However, CTPs must be in ordered coordinate pairs. This ordering problem is resolved using curve reconstruction (CR) or chain code (CC) algorithms. Existing CR methods lead to issues like holes, while some chain codes have junction-induced errors that need preprocessing. To address the above issues, a new graph neural network (GNN)-based approach named curvature and chain code-based corner detection (CCCD) is introduced that not only orders the CTPs but also removes junction errors. The goal is to improve accuracy and reliability in generating smooth surfaces. The paper fuses well-known CD methods with a curve generation technique and compares these alternative fused methods with CCCD. CCCD is also compared against other curve reconstruction techniques to establish its superiority. For validation, CCCD’s accuracy in predicting boundaries is compared with deep learning models like Polar U-Net, KiU-Net 3D, and HdenseUnet, achieving an impressive Dice score of 98.49%, even with only 39.13% boundary
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.