Zhenkun Guo, Jiaqi Wen, Dewen Yu, Guobiao Hu, Yaowen Yang
{"title":"Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression","authors":"Zhenkun Guo, Jiaqi Wen, Dewen Yu, Guobiao Hu, Yaowen Yang","doi":"10.1115/1.4063443","DOIUrl":null,"url":null,"abstract":"Abstract This paper proposes a novel phononic crystal sandwich beam (PCSB) for low-frequency and broadband vibration suppression. The representative volume element (RVE) consists of two hourglass truss unit cells with the same span but different rod radii. After validating the modeling method, a model of the PCSB is established to calculate band structure and transmittance response, and the results show good agreement. It is found that the PCSB can open wider and lower band gaps compared to a traditional sandwich beam (TSB). The band-folding mechanism is applied. The PCSB breaks the spatial symmetry, becomes diatomic, and opens the folding points, finally leading to two band-folding-induced gaps. The experiment is conducted on the PCSB, and the vibration band gap property is confirmed. Subsequently, the impacts of geometric parameters on the PCSB’s band gaps are investigated in detail. Design guidelines for tuning the geometric parameters toward lower frequency and broadband band gap are provided based on the parametric study results. In addition, the higher-order band-folding strategy is proposed. It is shown that a multi-folding PCSB can produce more band gaps. However, through two examples, i.e., second-folding and third-folding PCSBs, it is known that simply increasing the folding order may not be effective and even could deteriorate the vibration attenuation ability. In summary, this work explores a general strategy for designing sandwich beams with low-frequency and broadband vibration suppression ability.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"848 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063443","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper proposes a novel phononic crystal sandwich beam (PCSB) for low-frequency and broadband vibration suppression. The representative volume element (RVE) consists of two hourglass truss unit cells with the same span but different rod radii. After validating the modeling method, a model of the PCSB is established to calculate band structure and transmittance response, and the results show good agreement. It is found that the PCSB can open wider and lower band gaps compared to a traditional sandwich beam (TSB). The band-folding mechanism is applied. The PCSB breaks the spatial symmetry, becomes diatomic, and opens the folding points, finally leading to two band-folding-induced gaps. The experiment is conducted on the PCSB, and the vibration band gap property is confirmed. Subsequently, the impacts of geometric parameters on the PCSB’s band gaps are investigated in detail. Design guidelines for tuning the geometric parameters toward lower frequency and broadband band gap are provided based on the parametric study results. In addition, the higher-order band-folding strategy is proposed. It is shown that a multi-folding PCSB can produce more band gaps. However, through two examples, i.e., second-folding and third-folding PCSBs, it is known that simply increasing the folding order may not be effective and even could deteriorate the vibration attenuation ability. In summary, this work explores a general strategy for designing sandwich beams with low-frequency and broadband vibration suppression ability.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.