An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm

Xinyu Wang, Hongyu Zhu, Xiaoyuan Luo, Shaoping Chang, Xinping Guan
{"title":"An energy dispatch optimization for hybrid power ship system based on improved genetic algorithm","authors":"Xinyu Wang, Hongyu Zhu, Xiaoyuan Luo, Shaoping Chang, Xinping Guan","doi":"10.1177/09576509231205342","DOIUrl":null,"url":null,"abstract":"Due to the energy crisis and environmental deterioration, the emerging hybrid energy ship power system gradually replaced the traditional ship power system to keep environmental friendliness by employing the clean energy. However, the increase of energy storage and photovoltaic generation system brings enormous challenge to the optimization scheduling of hybrid energy ship power system. For this reason, an improved genetic algorithm-based optimal scheduling strategy for the hybrid energy ship power system is developed in this paper. Firstly, a novel hybrid energy ship power system model including the diesel generator, energy storage system, propulsion system, dynamic load and photovoltaic power generation device is constructed under the constraint of energy efficiency and greenhouse gases emissions. Considering the various navigation situations that the ship may encounter, such as photovoltaic power generation limit in extreme weather and diesel generator power change in load shedding, the corresponding scheduling optimization problems for the hybrid energy ship power system are established. Under the cost and gas emission constraints, an improved genetic algorithm-based scheduling optimization algorithm is proposed. By introducing the nonlinear parameter change model in crossover and mutation operator, the performance of improved genetic algorithm can be enhanced, such as convergence speed and global optimization ability. Compared with current works, the proposed scheduling optimization strategy can achieve the lowest cost while reducing environmental impacts. Finally, simulation results under the given navigation cases demonstrate the superiority of the proposed improved genetic algorithm-based scheduling optimization strategy.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09576509231205342","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the energy crisis and environmental deterioration, the emerging hybrid energy ship power system gradually replaced the traditional ship power system to keep environmental friendliness by employing the clean energy. However, the increase of energy storage and photovoltaic generation system brings enormous challenge to the optimization scheduling of hybrid energy ship power system. For this reason, an improved genetic algorithm-based optimal scheduling strategy for the hybrid energy ship power system is developed in this paper. Firstly, a novel hybrid energy ship power system model including the diesel generator, energy storage system, propulsion system, dynamic load and photovoltaic power generation device is constructed under the constraint of energy efficiency and greenhouse gases emissions. Considering the various navigation situations that the ship may encounter, such as photovoltaic power generation limit in extreme weather and diesel generator power change in load shedding, the corresponding scheduling optimization problems for the hybrid energy ship power system are established. Under the cost and gas emission constraints, an improved genetic algorithm-based scheduling optimization algorithm is proposed. By introducing the nonlinear parameter change model in crossover and mutation operator, the performance of improved genetic algorithm can be enhanced, such as convergence speed and global optimization ability. Compared with current works, the proposed scheduling optimization strategy can achieve the lowest cost while reducing environmental impacts. Finally, simulation results under the given navigation cases demonstrate the superiority of the proposed improved genetic algorithm-based scheduling optimization strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进遗传算法的混合动力船舶系统能量调度优化
由于能源危机和环境恶化,新兴的混合能源船舶动力系统逐渐取代了传统的船舶动力系统,通过使用清洁能源来保持环境友好。然而,储能和光伏发电系统的增加给混合能源船舶电力系统的优化调度带来了巨大的挑战。为此,本文提出了一种基于改进遗传算法的船舶混合动力系统最优调度策略。首先,在能效和温室气体排放约束下,构建了包括柴油发电机、储能系统、推进系统、动载和光伏发电装置在内的新型混合能源船舶动力系统模型。考虑船舶可能遇到的各种航行情况,如极端天气下光伏发电受限、减载时柴油发电功率变化等,建立了相应的混合能源船舶动力系统调度优化问题。在成本和气体排放约束下,提出了一种改进的基于遗传算法的调度优化算法。通过在交叉和变异算子中引入非线性参数变化模型,改进遗传算法的收敛速度和全局寻优能力得到了提高。与现有工程相比,所提出的调度优化策略能够在降低环境影响的同时实现成本最低。最后,在给定导航情况下的仿真结果验证了改进遗传算法调度优化策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1