Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model

Xin Yan, Haibo Wang, Kun He
{"title":"Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model","authors":"Xin Yan, Haibo Wang, Kun He","doi":"10.1177/09576509241277578","DOIUrl":null,"url":null,"abstract":"The periodic-cell model was proposed to simulate the successive contacts between the labyrinth fin and multiple honeycomb cells. With the experimental data, the finite-element-analysis (FEA) method with the periodic-cell model was validated. The effects of incursion parameters (i.e. incursion depth, incursion rate and sliding velocity) on the contact force, frictional temperature, material loss, and worn geometry of the honeycomb seal during the incursion process were studied. With the predicted worn geometry, the sealing performance degradation in the honeycomb seal was analyzed. The results showed that the proposed periodic-cell model has an excellent accuracy in predicting the wear behavior of honeycomb seal in rubbing events. The contact force between the honeycomb liner and labyrinth fin is pronounced especially at low sliding velocity and high incursion rate conditions, which increases the possibility of wear damage in the rotor part. At low sliding velocity and low incursion rate conditions, the frictional heat transferring to rotor part is increased, which increases the thermal stress near the contact region of the rotor part. As the clearance gap of honeycomb seal increases from 0.6 mm to 0.9 mm in the rubbing event, the leakage rate is increased by about 12%, and the carry-over effects downstream of the worn cells are increased.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241277578","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The periodic-cell model was proposed to simulate the successive contacts between the labyrinth fin and multiple honeycomb cells. With the experimental data, the finite-element-analysis (FEA) method with the periodic-cell model was validated. The effects of incursion parameters (i.e. incursion depth, incursion rate and sliding velocity) on the contact force, frictional temperature, material loss, and worn geometry of the honeycomb seal during the incursion process were studied. With the predicted worn geometry, the sealing performance degradation in the honeycomb seal was analyzed. The results showed that the proposed periodic-cell model has an excellent accuracy in predicting the wear behavior of honeycomb seal in rubbing events. The contact force between the honeycomb liner and labyrinth fin is pronounced especially at low sliding velocity and high incursion rate conditions, which increases the possibility of wear damage in the rotor part. At low sliding velocity and low incursion rate conditions, the frictional heat transferring to rotor part is increased, which increases the thermal stress near the contact region of the rotor part. As the clearance gap of honeycomb seal increases from 0.6 mm to 0.9 mm in the rubbing event, the leakage rate is increased by about 12%, and the carry-over effects downstream of the worn cells are increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用周期细胞模型研究蜂窝状土地与迷宫式鳍片的摩擦磨损行为
提出了周期单元模型来模拟迷宫鳍片和多个蜂窝单元之间的连续接触。利用实验数据,对采用周期性单元模型的有限元分析方法进行了验证。研究了切入参数(即切入深度、切入速率和滑动速度)对切入过程中蜂窝密封件的接触力、摩擦温度、材料损耗和磨损几何形状的影响。根据预测的磨损几何形状,对蜂窝密封件的密封性能退化进行了分析。结果表明,所提出的周期单元模型在预测蜂窝密封件在摩擦过程中的磨损行为方面具有极高的准确性。特别是在低滑动速度和高侵入率条件下,蜂窝衬垫和迷宫鳍之间的接触力非常明显,这增加了转子部件磨损损坏的可能性。在低滑动速度和低侵入率条件下,传递到转子部件的摩擦热增加,从而增加了转子部件接触区附近的热应力。在摩擦事件中,当蜂窝密封件的间隙从 0.6 毫米增加到 0.9 毫米时,泄漏率增加了约 12%,磨损单元下游的携带效应也增加了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1