Cluster Synchronization as a Mechanism of Free Recall in Working Memory Networks

Matin Jafarian;David Chávez Huerta;Gianluca Villani;Anders Lansner;Karl H. Johansson
{"title":"Cluster Synchronization as a Mechanism of Free Recall in Working Memory Networks","authors":"Matin Jafarian;David Chávez Huerta;Gianluca Villani;Anders Lansner;Karl H. Johansson","doi":"10.1109/OJCSYS.2023.3328201","DOIUrl":null,"url":null,"abstract":"This article studies free recall, i.e., the reactivation of stored memory items, namely \n<italic>patterns</i>\n, in any order, of a model of working memory. Our free recall model is based on a biologically plausible modular neural network composed of \n<inline-formula><tex-math>$H$</tex-math></inline-formula>\n modules, namely \n<italic>hypercolumns</i>\n, each of which is a bundle of \n<inline-formula><tex-math>$M$</tex-math></inline-formula>\n \n<italic>minicolumns</i>\n. The coupling weights and constant bias values of the network are determined by a Hebbian plasticity rule. Using techniques from nonlinear stability theory, we show that cluster synchronization is the central mechanism governing free recall of orthogonally encoded patterns. Particularly, we show that free recall's cluster synchronization is the combination of two main mechanisms: simultaneous activities of minicolumns representing an encoded pattern, i.e., within-pattern synchronization, together with time-divided activities of minicolumns representing different patterns. We characterize the coupling and bias value conditions under which cluster synchronization emerges. We also discuss the role of heterogeneous coupling weights and bias values of minicolumns' dynamics in free recall. Specifically, we compare the behaviour of two \n<inline-formula><tex-math>$H \\times 2$</tex-math></inline-formula>\n networks with identical and non-identical coupling weights and bias values. For these two networks, we obtain bounds on couplings and bias values under which both encoded patterns are recalled. Our analysis shows that having non-identical couplings and bias values for different patterns increases the possibility of their free recall. Numerical simulations are given to validate the theoretical analysis.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"2 ","pages":"454-463"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10301556","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10301556/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies free recall, i.e., the reactivation of stored memory items, namely patterns , in any order, of a model of working memory. Our free recall model is based on a biologically plausible modular neural network composed of $H$ modules, namely hypercolumns , each of which is a bundle of $M$ minicolumns . The coupling weights and constant bias values of the network are determined by a Hebbian plasticity rule. Using techniques from nonlinear stability theory, we show that cluster synchronization is the central mechanism governing free recall of orthogonally encoded patterns. Particularly, we show that free recall's cluster synchronization is the combination of two main mechanisms: simultaneous activities of minicolumns representing an encoded pattern, i.e., within-pattern synchronization, together with time-divided activities of minicolumns representing different patterns. We characterize the coupling and bias value conditions under which cluster synchronization emerges. We also discuss the role of heterogeneous coupling weights and bias values of minicolumns' dynamics in free recall. Specifically, we compare the behaviour of two $H \times 2$ networks with identical and non-identical coupling weights and bias values. For these two networks, we obtain bounds on couplings and bias values under which both encoded patterns are recalled. Our analysis shows that having non-identical couplings and bias values for different patterns increases the possibility of their free recall. Numerical simulations are given to validate the theoretical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集群同步是工作记忆网络中的自由回忆机制
本文研究的是自由回忆,即重新激活工作记忆模型中存储的记忆项(即任意顺序的模式)。我们的自由回忆模型基于一个生物学上可信的模块化神经网络,该网络由 $H$ 模块(即超柱)组成,每个模块都是一束 $M$ 小柱。网络的耦合权重和恒定偏置值由海比可塑性规则决定。利用非线性稳定性理论的技术,我们证明了集群同步是支配正交编码模式自由回忆的核心机制。特别是,我们证明了自由回忆的集群同步是两种主要机制的结合:代表一种编码模式的小柱的同时活动(即模式内同步),以及代表不同模式的小柱的分时活动。我们描述了集群同步出现的耦合和偏置值条件。我们还讨论了小柱动态的异质耦合权重和偏置值在自由回忆中的作用。具体来说,我们比较了两个具有相同和非相同耦合权重和偏置值的 $H \times 2$ 网络的行为。对于这两个网络,我们得到了耦合和偏置值的边界,在此边界下,两种编码模式都能被召回。我们的分析表明,不同模式的非相同耦合和偏置值增加了它们被自由调用的可能性。我们给出了数值模拟来验证理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Control of Endemic Epidemic Diseases With Behavioral Response Resilient Multi-Agent Systems Against Denial of Service Attacks via Adaptive and Activatable Network Layers Resiliency Through Collaboration in Heterogeneous Multi-Robot Systems Resilient Synchronization of Pulse-Coupled Oscillators Under Stealthy Attacks Pareto-Optimal Event-Based Scheme for Station and Inter-Station Control of Electric and Automated Buses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1