Short-term photovoltaic power forecasting using hybrid contrastive learning and temporal convolutional network under future meteorological information absence
{"title":"Short-term photovoltaic power forecasting using hybrid contrastive learning and temporal convolutional network under future meteorological information absence","authors":"Xiaoyang Lu, Yandang Chen, Qibin Li, Pingping Yu","doi":"10.1111/coin.12606","DOIUrl":null,"url":null,"abstract":"<p>Photovoltaic (PV) power generation is widely utilized to satisfy the increasing energy demand due to its cleanness and inexhaustibility. Accurate PV power forecasting can improve the penetration of PV power in the grid. However, it is pretty challenging to predict PV power in short-term under precious future meteorological information absence conditions. To address this problem, this study proposes the hybrid Contrastive Learning and Temporal Convolutional Network (CL-TCN), and this forecasting approach consists of two parts, including model training and adaptive processes of forecasting models. In the model training stage, this forecasting method firstly trains 18 TCN models for 18 time points from 9:00 a.m. to 17:30 p.m. These TCN models are trained by only using historical PV power data samples, and each model is used to predict the next half-hour power output. The adaptive process of models means that, in a practical forecasting stage, PV power samples from historical data are firstly evaluated and scored by a CL based data scoring mechanism to search for the most similar data samples to current measured samples. Then these similar samples are further applied to training a single above-mentioned well-trained TCN model to improve its performance in forecasting the next half-hour PV power. The experimental results tested at the time resolution of 30 min demonstrate that the proposed approach has superior performance in forecasting accuracy not only in smooth PV power samples but also in fluctuating PV power samples. Moreover, the proposed CL based data scoring mechanism can filter useless data samples effectively accelerating the forecasting process.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12606","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Photovoltaic (PV) power generation is widely utilized to satisfy the increasing energy demand due to its cleanness and inexhaustibility. Accurate PV power forecasting can improve the penetration of PV power in the grid. However, it is pretty challenging to predict PV power in short-term under precious future meteorological information absence conditions. To address this problem, this study proposes the hybrid Contrastive Learning and Temporal Convolutional Network (CL-TCN), and this forecasting approach consists of two parts, including model training and adaptive processes of forecasting models. In the model training stage, this forecasting method firstly trains 18 TCN models for 18 time points from 9:00 a.m. to 17:30 p.m. These TCN models are trained by only using historical PV power data samples, and each model is used to predict the next half-hour power output. The adaptive process of models means that, in a practical forecasting stage, PV power samples from historical data are firstly evaluated and scored by a CL based data scoring mechanism to search for the most similar data samples to current measured samples. Then these similar samples are further applied to training a single above-mentioned well-trained TCN model to improve its performance in forecasting the next half-hour PV power. The experimental results tested at the time resolution of 30 min demonstrate that the proposed approach has superior performance in forecasting accuracy not only in smooth PV power samples but also in fluctuating PV power samples. Moreover, the proposed CL based data scoring mechanism can filter useless data samples effectively accelerating the forecasting process.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.