首页 > 最新文献

Computational Intelligence最新文献

英文 中文
Reb-DINO: A Lightweight Pedestrian Detection Model With Structural Re-Parameterization in Apple Orchard
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-18 DOI: 10.1111/coin.70035
Ruiyang Li, Ge Song, Shansong Wang, Qingtian Zeng, Guiyuan Yuan, Weijian Ni, Nengfu Xie, Fengjin Xiao

Pedestrian detection is crucial in agricultural environments to ensure the safe operation of intelligent machinery. In orchards, pedestrians exhibit unpredictable behavior and can pose significant challenges to navigation and operation. This demands reliable detection technologies that ensures safety while addressing the unique challenges of orchard environments, such as dense foliage, uneven terrain, and varying lighting conditions. To address this, we propose ReB-DINO, a robust and accurate orchard pedestrian detection model based on an improved DINO. Initially, we improve the feature extraction module of DINO using structural re-parameterization, enhancing accuracy and speed of the model during training and inference decoupling. In addition, a progressive feature fusion module is employed to fuse the extracted features and improve model accuracy. Finally, the network incorporates a convolutional block attention mechanism and an improved loss function to improve pedestrian detection rates. The experimental results demonstrate a 1.6% improvement in Recall on the NREC dataset compared to the baseline. Moreover, the results show a 4.2% improvement in mAP$$ mathrm{mAP} $$ and the number of parameters decreases by 40.2% compared to the original DINO. In the PiFO dataset, the mAP$$ mathrm{mAP} $$ with a threshold of 0.5 reaches 99.4%, demonstrating high detection accuracy in realistic scenarios. Therefore, our model enhances both detection accuracy and real-time object detection capabilities in apple orchards, maintaining a lightweight attributes, surpassing mainstream object detection models.

{"title":"Reb-DINO: A Lightweight Pedestrian Detection Model With Structural Re-Parameterization in Apple Orchard","authors":"Ruiyang Li,&nbsp;Ge Song,&nbsp;Shansong Wang,&nbsp;Qingtian Zeng,&nbsp;Guiyuan Yuan,&nbsp;Weijian Ni,&nbsp;Nengfu Xie,&nbsp;Fengjin Xiao","doi":"10.1111/coin.70035","DOIUrl":"https://doi.org/10.1111/coin.70035","url":null,"abstract":"<div>\u0000 \u0000 <p>Pedestrian detection is crucial in agricultural environments to ensure the safe operation of intelligent machinery. In orchards, pedestrians exhibit unpredictable behavior and can pose significant challenges to navigation and operation. This demands reliable detection technologies that ensures safety while addressing the unique challenges of orchard environments, such as dense foliage, uneven terrain, and varying lighting conditions. To address this, we propose ReB-DINO, a robust and accurate orchard pedestrian detection model based on an improved DINO. Initially, we improve the feature extraction module of DINO using structural re-parameterization, enhancing accuracy and speed of the model during training and inference decoupling. In addition, a progressive feature fusion module is employed to fuse the extracted features and improve model accuracy. Finally, the network incorporates a convolutional block attention mechanism and an improved loss function to improve pedestrian detection rates. The experimental results demonstrate a 1.6% improvement in Recall on the NREC dataset compared to the baseline. Moreover, the results show a 4.2% improvement in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>mAP</mtext>\u0000 </mrow>\u0000 <annotation>$$ mathrm{mAP} $$</annotation>\u0000 </semantics></math> and the number of parameters decreases by 40.2% compared to the original DINO. In the PiFO dataset, the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mtext>mAP</mtext>\u0000 </mrow>\u0000 <annotation>$$ mathrm{mAP} $$</annotation>\u0000 </semantics></math> with a threshold of 0.5 reaches 99.4%, demonstrating high detection accuracy in realistic scenarios. Therefore, our model enhances both detection accuracy and real-time object detection capabilities in apple orchards, maintaining a lightweight attributes, surpassing mainstream object detection models.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RETRACTION
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-18 DOI: 10.1111/coin.70037

RETRACTION: M. Li, K. Xu, S. Huang, “ Evaluation of Green and Sustainable Building Project Based on Extension Matter-Element Theory in Smart City Application,” Computational Intelligence 40, no. 1 (2024): e12286, https://doi.org/10.1111/coin.12286.

The above article, published online on 12 February 2020 in Wiley Online Library (wileyonlinelibrary.com) has been retracted by agreement between the journal Editor-in-Chief, Diana Inkpen; and Wiley Periodicals LLC. The article was published as part of a guest-edited issue. Following an investigation by the publisher, all parties have concluded that this article was accepted solely on the basis of a compromised peer review process. The editors have therefore decided to retract the article. The authors disagree with the retraction.

{"title":"RETRACTION","authors":"","doi":"10.1111/coin.70037","DOIUrl":"https://doi.org/10.1111/coin.70037","url":null,"abstract":"<p>\u0000 <b>RETRACTION:</b> <span>M. Li</span>, <span>K. Xu</span>, <span>S. Huang</span>, “ <span>Evaluation of Green and Sustainable Building Project Based on Extension Matter-Element Theory in Smart City Application</span>,” <i>Computational Intelligence</i> <span>40</span>, no. <span>1</span> (<span>2024</span>): e12286, \u0000https://doi.org/10.1111/coin.12286.</p><p>The above article, published online on 12 February 2020 in Wiley Online Library (\u0000wileyonlinelibrary.com) has been retracted by agreement between the journal Editor-in-Chief, Diana Inkpen; and Wiley Periodicals LLC. The article was published as part of a guest-edited issue. Following an investigation by the publisher, all parties have concluded that this article was accepted solely on the basis of a compromised peer review process. The editors have therefore decided to retract the article. The authors disagree with the retraction.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143645917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method for Constructing Open-Channel Velocity Field Prediction Model Based on Machine Learning and CFD 基于机器学习和 CFD 的明渠流速场预测模型构建方法
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-17 DOI: 10.1111/coin.70043
Bo Li, Cheng Jin, Ruixiang Lin, Xinzhi Zhou, Mingjiang Deng

Rapid and accurate prediction of the sectional velocity field of the channel is of great significance to the design and maintenance of open channels and the improvement of irrigation efficiency. During the water delivery process of Renmin Canal of Dujiangyan irrigation system, the water level of the main canal changes rapidly and in a large range, which is the biggest difficulty in real-time prediction of its velocity field. Therefore, based on machine learning, this paper proposes a new method to construct a real-time velocity field prediction model, which can directly predict the velocity field of the channel according to the water level. According to this method, the computational fluid dynamics (CFD) technology is used to simulate the target open channel, and a machine learning model that can adaptively optimize the characteristics of the velocity field data is designed as the velocity field prediction model, which is experimented in the main canal of Renmin Canal of Dujiangyan irrigation system. The results suggest that the predictions are in line with the general features of flow velocity distribution in open channels and have high precision. Therefore, this method is of high value for engineering application and theoretical research.

{"title":"A Method for Constructing Open-Channel Velocity Field Prediction Model Based on Machine Learning and CFD","authors":"Bo Li,&nbsp;Cheng Jin,&nbsp;Ruixiang Lin,&nbsp;Xinzhi Zhou,&nbsp;Mingjiang Deng","doi":"10.1111/coin.70043","DOIUrl":"https://doi.org/10.1111/coin.70043","url":null,"abstract":"<div>\u0000 \u0000 <p>Rapid and accurate prediction of the sectional velocity field of the channel is of great significance to the design and maintenance of open channels and the improvement of irrigation efficiency. During the water delivery process of Renmin Canal of Dujiangyan irrigation system, the water level of the main canal changes rapidly and in a large range, which is the biggest difficulty in real-time prediction of its velocity field. Therefore, based on machine learning, this paper proposes a new method to construct a real-time velocity field prediction model, which can directly predict the velocity field of the channel according to the water level. According to this method, the computational fluid dynamics (CFD) technology is used to simulate the target open channel, and a machine learning model that can adaptively optimize the characteristics of the velocity field data is designed as the velocity field prediction model, which is experimented in the main canal of Renmin Canal of Dujiangyan irrigation system. The results suggest that the predictions are in line with the general features of flow velocity distribution in open channels and have high precision. Therefore, this method is of high value for engineering application and theoretical research.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Violence Detection in Video Using Statistical Features of the Optical Flow and 2D Convolutional Neural Network
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-11 DOI: 10.1111/coin.70034
Javad Mahmoodi, Hossein Nezamabadi-Pour

The rapid growth of video data has resulted in an increasing need for surveillance and violence detection systems. Although such events occur less frequently than normal activities, developing automated video surveillance systems for violence detection has become essential to minimize labor and time waste. Detecting violent activity in videos is a challenging task due to the variability and diversity of violent behavior, which can involve a wide range of actions, motions, and interactions between people and objects. Currently, researchers employ deep learning models to detect violent behaviors. In fact, a large number of deep learning approaches are based on extracting spatio-temporal information from a video by exploiting a 3D Convolutional Neural Network (CNN). Despite their success, these techniques require a lot more parameters than 2D CNNs and have high computational complexity. Therefore, we focus on exploiting a 2D CNN to encode spatio-temporal information. Actually, statistical features of the optical flow changes are used to give this ability to a 2D CNN. These features are designed to make attention to regions of a video clip with much more motion. Accordingly, the optical flow of an input video is calculated. To determine meaningful changes in the optical flow, the optical flow magnitude of a current frame is compared with its predecessor. After that, statistical features of these changes are extracted to summarize a video clip to a 2D template, which feeds a 2D CNN. Experimental results on four benchmark datasets observe that the suggested strategy outperforms baseline ones. In particular, we make a better estimation of the spatio-temporal features in a video by shortening a video clip into a 2D template.

{"title":"Violence Detection in Video Using Statistical Features of the Optical Flow and 2D Convolutional Neural Network","authors":"Javad Mahmoodi,&nbsp;Hossein Nezamabadi-Pour","doi":"10.1111/coin.70034","DOIUrl":"https://doi.org/10.1111/coin.70034","url":null,"abstract":"<div>\u0000 \u0000 <p>The rapid growth of video data has resulted in an increasing need for surveillance and violence detection systems. Although such events occur less frequently than normal activities, developing automated video surveillance systems for violence detection has become essential to minimize labor and time waste. Detecting violent activity in videos is a challenging task due to the variability and diversity of violent behavior, which can involve a wide range of actions, motions, and interactions between people and objects. Currently, researchers employ deep learning models to detect violent behaviors. In fact, a large number of deep learning approaches are based on extracting spatio-temporal information from a video by exploiting a 3D Convolutional Neural Network (CNN). Despite their success, these techniques require a lot more parameters than 2D CNNs and have high computational complexity. Therefore, we focus on exploiting a 2D CNN to encode spatio-temporal information. Actually, statistical features of the optical flow changes are used to give this ability to a 2D CNN. These features are designed to make attention to regions of a video clip with much more motion. Accordingly, the optical flow of an input video is calculated. To determine meaningful changes in the optical flow, the optical flow magnitude of a current frame is compared with its predecessor. After that, statistical features of these changes are extracted to summarize a video clip to a 2D template, which feeds a 2D CNN. Experimental results on four benchmark datasets observe that the suggested strategy outperforms baseline ones. In particular, we make a better estimation of the spatio-temporal features in a video by shortening a video clip into a 2D template.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Solutions for Dynamic Complex Matrix Inversion and Chaotic Control Using ODE-Based Neural Computing Methods
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-10 DOI: 10.1111/coin.70042
Cheng Hua, Xinwei Cao, Bolin Liao

This paper proposes a robust dual-integral structure zeroing neural network (ZNN) design framework, effectively overcoming the limitations of existing single-integral enhanced ZNN models in completely suppressing linear noise. Based on this design framework, a complex-type dual-integral structure ZNN (DISZNN) model with inherent linear noise suppression capability is constructed for computing dynamic complex matrix inversion (DCMI) online. The stability, convergence, and robustness of the proposed DISZNN model are ensured via rigorous theoretical analyses. In three distinct experiments involving DCMI (including cases with only imaginary parts, both real and imaginary parts, and high-dimensional scenarios), the state trajectories of the DISZNN model are well and quickly fitted to the dynamic trajectories of the theoretical solutions with very low residual errors in various linear noise environments. More specifically, the residual errors of the DISZNN model for online computation of DCMI under linear noise environments are consistently below the order of 103$$ 1{0}^{-3} $$, representing one-thousandth of the residual errors in existing noise-tolerant ZNN models. Finally, the DISZNN design framework is applied to construct a controlled chaotic system of a permanent magnet synchronous motor (PMSM) with uncertainties and external disturbances based on real-world modeling. Experimental results demonstrate that the three state errors of the controlled PMSM chaotic system converge to zero quickly and stably under various conditions (system parameters, external disturbances, and uncertainties), further highlighting the superiority and generalizability of the DISZNN design framework.

{"title":"Real-Time Solutions for Dynamic Complex Matrix Inversion and Chaotic Control Using ODE-Based Neural Computing Methods","authors":"Cheng Hua,&nbsp;Xinwei Cao,&nbsp;Bolin Liao","doi":"10.1111/coin.70042","DOIUrl":"https://doi.org/10.1111/coin.70042","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper proposes a robust dual-integral structure zeroing neural network (ZNN) design framework, effectively overcoming the limitations of existing single-integral enhanced ZNN models in completely suppressing linear noise. Based on this design framework, a complex-type dual-integral structure ZNN (DISZNN) model with inherent linear noise suppression capability is constructed for computing dynamic complex matrix inversion (DCMI) online. The stability, convergence, and robustness of the proposed DISZNN model are ensured via rigorous theoretical analyses. In three distinct experiments involving DCMI (including cases with only imaginary parts, both real and imaginary parts, and high-dimensional scenarios), the state trajectories of the DISZNN model are well and quickly fitted to the dynamic trajectories of the theoretical solutions with very low residual errors in various linear noise environments. More specifically, the residual errors of the DISZNN model for online computation of DCMI under linear noise environments are consistently below the order of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <msup>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$$ 1{0}^{-3} $$</annotation>\u0000 </semantics></math>, representing one-thousandth of the residual errors in existing noise-tolerant ZNN models. Finally, the DISZNN design framework is applied to construct a controlled chaotic system of a permanent magnet synchronous motor (PMSM) with uncertainties and external disturbances based on real-world modeling. Experimental results demonstrate that the three state errors of the controlled PMSM chaotic system converge to zero quickly and stably under various conditions (system parameters, external disturbances, and uncertainties), further highlighting the superiority and generalizability of the DISZNN design framework.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Neural Machine Translation Through Code-Mixed Data Augmentation
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-06 DOI: 10.1111/coin.70033
Ramakrishna Appicharla, Kamal Kumar Gupta, Asif Ekbal, Pushpak Bhattacharyya

This paper studies neural machine translation (NMT) of code-mixed (CM) text. Specifically, we generate synthetic CM data and how it can be used to improve the translation performance of NMT through the data augmentation strategy. We conduct experiments on three data augmentation approaches viz. CM-Augmentation, CM-Concatenation, and Multi-Encoder approaches, and the latter two approaches are inspired by document-level NMT, where we use synthetic CM data as context to improve the performance of the NMT models. We conduct experiments on three language pairs, viz. Hindi–English, Telugu–English and Czech–English. Experimental results demonstrate that the proposed approaches significantly improve performance over the baseline model trained without data augmentation and over the existing data augmentation strategies. The CM-Concatenation model attains the best performance.

{"title":"Improving Neural Machine Translation Through Code-Mixed Data Augmentation","authors":"Ramakrishna Appicharla,&nbsp;Kamal Kumar Gupta,&nbsp;Asif Ekbal,&nbsp;Pushpak Bhattacharyya","doi":"10.1111/coin.70033","DOIUrl":"https://doi.org/10.1111/coin.70033","url":null,"abstract":"<div>\u0000 \u0000 <p>This paper studies neural machine translation (NMT) of code-mixed (CM) text. Specifically, we generate synthetic CM data and how it can be used to improve the translation performance of NMT through the data augmentation strategy. We conduct experiments on three data augmentation approaches viz. CM-Augmentation, CM-Concatenation, and Multi-Encoder approaches, and the latter two approaches are inspired by document-level NMT, where we use synthetic CM data as context to improve the performance of the NMT models. We conduct experiments on three language pairs, viz. Hindi–English, Telugu–English and Czech–English. Experimental results demonstrate that the proposed approaches significantly improve performance over the baseline model trained without data augmentation and over the existing data augmentation strategies. The CM-Concatenation model attains the best performance.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized Residual Attention Based Generalized Adversarial Network for COVID-19 Classification Using Chest CT Images
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-03-03 DOI: 10.1111/coin.70031
A. V. P. Sarvari, K. Sridevi

The early detection and classification of COVID-19 is crucial for disease diagnosis and control. To reduce the need for medical professionals, fast and accurate detection approaches for COVID-19 are required. Due to environmental concerns, the quality of the image gets degraded. Compared with reverse-transcription polymerase chain reaction (RT-PCR), chest computed tomography (CT) imaging may be a significantly more trustworthy, useful, and rapid technique to classify and evaluate COVID-19. Thus, the performance of the deep learning (DL) techniques is diminished. Therefore, a CT image-based hybrid DL technology is presented in this article for the classification of COVID-19 disease as COVID or non-COVID or pneumonia. Initially, in the pre-processing stage, the hybrid nonlocal moment bilateral filtering (Hybrid NMBF) technique is introduced for image de-noising and re-sizing. After pre-processing, the image is fed into the feature extraction phase. Gray-level covariance matrices (GLCM) technique is used to extract the relevant features and reduce feature dimensionality issues. For the feature selection process, the enhanced Archimedes optimization algorithm (EAOA) is introduced to select optimal features. The residual channel attention-generative adversarial network (RCA-GAN) technique is introduced for image classification. Here, the hyperparameter of the network is tuned using the Sandpiper optimization (SPO) algorithm to optimize the loss function. The data set used in this research is COVID-CT-machine learning deep learning (MD), and the performance is analyzed using the MATLAB tool. In the experimental scenario, the proposed system achieves 98.3% accuracy, 98.7% specificity, 99.4% sensitivity, 97.4% F-score, and 96.1% kappa. The attained results prove that the proposed system works better than the traditional techniques.

{"title":"Optimized Residual Attention Based Generalized Adversarial Network for COVID-19 Classification Using Chest CT Images","authors":"A. V. P. Sarvari,&nbsp;K. Sridevi","doi":"10.1111/coin.70031","DOIUrl":"https://doi.org/10.1111/coin.70031","url":null,"abstract":"<div>\u0000 \u0000 <p>The early detection and classification of COVID-19 is crucial for disease diagnosis and control. To reduce the need for medical professionals, fast and accurate detection approaches for COVID-19 are required. Due to environmental concerns, the quality of the image gets degraded. Compared with reverse-transcription polymerase chain reaction (RT-PCR), chest computed tomography (CT) imaging may be a significantly more trustworthy, useful, and rapid technique to classify and evaluate COVID-19. Thus, the performance of the deep learning (DL) techniques is diminished. Therefore, a CT image-based hybrid DL technology is presented in this article for the classification of COVID-19 disease as COVID or non-COVID or pneumonia. Initially, in the pre-processing stage, the hybrid nonlocal moment bilateral filtering (Hybrid NMBF) technique is introduced for image de-noising and re-sizing. After pre-processing, the image is fed into the feature extraction phase. Gray-level covariance matrices (GLCM) technique is used to extract the relevant features and reduce feature dimensionality issues. For the feature selection process, the enhanced Archimedes optimization algorithm (EAOA) is introduced to select optimal features. The residual channel attention-generative adversarial network (RCA-GAN) technique is introduced for image classification. Here, the hyperparameter of the network is tuned using the Sandpiper optimization (SPO) algorithm to optimize the loss function. The data set used in this research is COVID-CT-machine learning deep learning (MD), and the performance is analyzed using the MATLAB tool. In the experimental scenario, the proposed system achieves 98.3% accuracy, 98.7% specificity, 99.4% sensitivity, 97.4% <i>F</i>-score, and 96.1% kappa. The attained results prove that the proposed system works better than the traditional techniques.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143533468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PCIR: Privacy-Preserving Convolutional Neural Network Inference With Rapid Responsiveness
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-02-25 DOI: 10.1111/coin.70030
Jinguo Li, Yan Yan, Kai Zhang, Chunlin Li, Peichun Yuan
<div> <p>Several companies leverage trained convolutional neural networks (CNNs) to offer predictive services to users. These companies capitalize on CNNs' superior performance in image processing tasks, such as autonomous driving or face recognition. To safeguard data privacy and model parameters, various algorithms have been proposed. Most of them are predominantly designed using secure multi-party computation (MPC) or hardware-assisted solutions. However, certain limitations persist. First, MPC-based approaches (e.g., garbled circuits, homomorphic encryption) fail to meet rapid responsiveness requirements. Additionally, hardware-assisted solutions impose extra burdens to realize secure inference tasks. The primary reasons for these shortcomings can be summarized as follows: (1) high computation and communication delays are introduced by heavy cryptographic operations during the online phase. (2) Additional overhead for sharing triples. In this article, we propose PCIR, a secure protocol for privacy-preserving convolutional neural network inference (PCIR). PCIR aims to address the aforementioned issues based on a pre-shared secret sharing mechanism. It can achieve rapid responses to user requirements and preserve privacy of data and model for the following reasons: (1) it circumvents computationally expensive operations, such as an operation for permuting plaintext slots, which runs 56 times slower than a homomorphic addition operation, and 34 times slower than a homomorphic multiplication operation. (2) Computational operations, such as homomorphic additions or multiplications, are conducted during the pre-computation phase. It can significantly reduce the online computing costs. (3) PCIR conducts secure multiplication based on pre-shared secret shares. It results in much lower communication and computation costs compared with the use of multiplicative triples. Finally, we evaluate PCIR with benchmark neural networks trained on the MNIST and CIFAR-10 datasets. The results have shown that PCIR requires <span></span><math> <semantics> <mrow> <mn>1</mn> <mo>.</mo> <mn>3</mn> <mo>×</mo> <mo>−</mo> <mn>3</mn> <mo>.</mo> <mn>7</mn> <mo>×</mo> </mrow> <annotation>$$ 1.3times -3.7times $$</annotation> </semantics></math> less time and <span></span><math> <semantics> <mrow> <mn>1</mn> <mo>.</mo> <mn>1</mn> <mo>×</mo> <mo>−</mo> <mn>12</mn> <mo>.</mo> <mn>3</mn> <mo>×</mo> </mrow> <annotation>$$ 1.1times -12.3times $$</annotation> </semantics></math> less communication cost than pr
{"title":"PCIR: Privacy-Preserving Convolutional Neural Network Inference With Rapid Responsiveness","authors":"Jinguo Li,&nbsp;Yan Yan,&nbsp;Kai Zhang,&nbsp;Chunlin Li,&nbsp;Peichun Yuan","doi":"10.1111/coin.70030","DOIUrl":"https://doi.org/10.1111/coin.70030","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;Several companies leverage trained convolutional neural networks (CNNs) to offer predictive services to users. These companies capitalize on CNNs' superior performance in image processing tasks, such as autonomous driving or face recognition. To safeguard data privacy and model parameters, various algorithms have been proposed. Most of them are predominantly designed using secure multi-party computation (MPC) or hardware-assisted solutions. However, certain limitations persist. First, MPC-based approaches (e.g., garbled circuits, homomorphic encryption) fail to meet rapid responsiveness requirements. Additionally, hardware-assisted solutions impose extra burdens to realize secure inference tasks. The primary reasons for these shortcomings can be summarized as follows: (1) high computation and communication delays are introduced by heavy cryptographic operations during the online phase. (2) Additional overhead for sharing triples. In this article, we propose PCIR, a secure protocol for privacy-preserving convolutional neural network inference (PCIR). PCIR aims to address the aforementioned issues based on a pre-shared secret sharing mechanism. It can achieve rapid responses to user requirements and preserve privacy of data and model for the following reasons: (1) it circumvents computationally expensive operations, such as an operation for permuting plaintext slots, which runs 56 times slower than a homomorphic addition operation, and 34 times slower than a homomorphic multiplication operation. (2) Computational operations, such as homomorphic additions or multiplications, are conducted during the pre-computation phase. It can significantly reduce the online computing costs. (3) PCIR conducts secure multiplication based on pre-shared secret shares. It results in much lower communication and computation costs compared with the use of multiplicative triples. Finally, we evaluate PCIR with benchmark neural networks trained on the MNIST and CIFAR-10 datasets. The results have shown that PCIR requires &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;.&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;.&lt;/mo&gt;\u0000 &lt;mn&gt;7&lt;/mn&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 1.3times -3.7times $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; less time and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;.&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;12&lt;/mn&gt;\u0000 &lt;mo&gt;.&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;×&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 1.1times -12.3times $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; less communication cost than pr","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143489686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-02-18 DOI: 10.1111/coin.70026
Nancy Alshaer, Reham Abdelfatah, Tawfik Ismail, Haitham Mahmoud

The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking. Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real-time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.

{"title":"Vision-Based UAV Detection and Tracking Using Deep Learning and Kalman Filter","authors":"Nancy Alshaer,&nbsp;Reham Abdelfatah,&nbsp;Tawfik Ismail,&nbsp;Haitham Mahmoud","doi":"10.1111/coin.70026","DOIUrl":"https://doi.org/10.1111/coin.70026","url":null,"abstract":"<p>The rapid increase in unmanned aerial vehicles (UAVs) usage across various sectors has heightened the need for robust detection and tracking systems due to safety and security concerns. Traditional methods like radar and acoustic sensors face limitations in noisy environments, underscoring the necessity for advanced solutions such as deep learning-based detection and tracking. Hence, this article proposes a two-stage platform designed to address these challenges by detecting, classifying, and tracking various consumer-grade UAVs. The tracking efficacy of the proposed system is assessed using a combination of deep learning and Kalman filter techniques. Specifically, we evaluate models such as YOLOv3, YOLOv4, YOLOv5, and YOLOx to identify the most efficient detector for the initial detection stage. Moreover, we employ both the Kalman filter and the Extended Kalman filter for the tracking stage, enhancing the system's robustness and enabling real-time tracking capabilities. To train our detector, we construct a dataset comprising approximately 10,000 records that capture the diverse environmental and behavioural conditions experienced by UAVs during their flight. We then present both visual and analytical results to assess and compare the performance of our detector and tracker. Our proposed system effectively mitigates cumulative detection errors across consecutive video frames and enhances the accuracy of the target's bounding boxes.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70026","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification
IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2025-02-14 DOI: 10.1111/coin.70027
Barkha Bhavsar, Bela Shrimali

Cervical cancer, like many other cancers, is most treatable when detected at an early stage. Using classification methods helps find early signs of cancer and small tumors. This allows doctors to act quickly and offer treatments that might cure the cancer. This paper presents a comprehensive approach to the classification of squamous cell carcinoma (SCC) leveraging a dataset comprising 1140 single-cell images sourced from Herlev. In addition to that, in this work, a new ensemble model based on the transfer-learning (TL) technique is developed on various deep learning models, including DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101 to demonstrate their efficacy in classifying diverse cellular features. To evaluate our proposed approach's performance, the ensemble approach's results are compared with some transfer learning models such as DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101. The experimental results demonstrate that transfer learning-based deep neural networks combined with ensemble methods enhance the diagnostic accuracy of SCC classification systems, achieving 98% accuracy across various cell types. This further validates the effectiveness of the proposed approach. A comprehensive investigation yields a precise and efficient model for SCC classification, offering detailed insights into both normal and abnormal cell types.

{"title":"TransPapCanCervix: An Enhanced Transfer Learning-Based Ensemble Model for Cervical Cancer Classification","authors":"Barkha Bhavsar,&nbsp;Bela Shrimali","doi":"10.1111/coin.70027","DOIUrl":"https://doi.org/10.1111/coin.70027","url":null,"abstract":"<div>\u0000 \u0000 <p>Cervical cancer, like many other cancers, is most treatable when detected at an early stage. Using classification methods helps find early signs of cancer and small tumors. This allows doctors to act quickly and offer treatments that might cure the cancer. This paper presents a comprehensive approach to the classification of squamous cell carcinoma (SCC) leveraging a dataset comprising 1140 single-cell images sourced from Herlev. In addition to that, in this work, a new ensemble model based on the transfer-learning (TL) technique is developed on various deep learning models, including DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101 to demonstrate their efficacy in classifying diverse cellular features. To evaluate our proposed approach's performance, the ensemble approach's results are compared with some transfer learning models such as DenseNet121, DenseNet169, InceptionResNet, XceptionNet, ResNet50, and ResNet101. The experimental results demonstrate that transfer learning-based deep neural networks combined with ensemble methods enhance the diagnostic accuracy of SCC classification systems, achieving 98% accuracy across various cell types. This further validates the effectiveness of the proposed approach. A comprehensive investigation yields a precise and efficient model for SCC classification, offering detailed insights into both normal and abnormal cell types.</p>\u0000 </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143423684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1