{"title":"Unsteady aerodynamic behaviour of high-speed maglev trains during plate braking in tailwind and headwind opening configurations","authors":"Haixia Guo, Kunlun Zhang, Gang Xu, Jiqiang Niu","doi":"10.1080/23248378.2023.2271478","DOIUrl":null,"url":null,"abstract":"ABSTRACTHigh-speed maglev trains are important future rail transportation systems that require high braking performance. One approach to braking in high-speed trains is using aerodynamic plate brakes, which offer improved braking performance at high speeds but can impact the train’s aerodynamic characteristics. In this study, dynamic grid technology was used to achieve plate motion, and unsteady Reynolds-averaged Navier-Stokes (URANS) equations and shear stress transfer (SST) k-ω turbulence model were adopted to simulate the unsteady aerodynamic behaviour of a 5-car maglev train running at 600 km/h. Two wind tunnel experiments validated the method, and grid independence analysis was also conducted. The unsteady aerodynamic performance and transient flow field around the train during plate braking in tailwind and headwind opening configurations were studied and analysed. As the plates opened, there was a rapid increase in both aerodynamic drag and lift, creating a pulse-like change. The tailwind opening configuration generated relatively large peak aerodynamic forces, whereas the peak forces decreased successively downstream along the train length. As the flow stabilized, periodic fluctuations in the aerodynamic forces of the plates occurred. The interference with the convective field and the impact on the aerodynamic force of the tail car were more significant for the tailwind opening configuration. In addition, the tailwind opening plate caused significant fluctuations in the aerodynamic force of the tail car, with similar effects observed in other cars. From an aerodynamic perspective, the headwind opening configuration yielded better results. These findings can guide the design and implementation of plate brakes for high-speed maglev trains.KEYWORDS: High-speed maglev trainopen directionaerodynamic plate brakingunsteady aerodynamic behaviourflow field Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.Additional informationFundingThis study was supported by the Key R&D Program of Shandong Province (Major Scientific and Technological Innovation Project) [2020CXGC010202], Fundamental Research Funds for the National Natural Science Foundation of China [52172359 and 52372363].","PeriodicalId":48510,"journal":{"name":"International Journal of Rail Transportation","volume":"1 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rail Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23248378.2023.2271478","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTHigh-speed maglev trains are important future rail transportation systems that require high braking performance. One approach to braking in high-speed trains is using aerodynamic plate brakes, which offer improved braking performance at high speeds but can impact the train’s aerodynamic characteristics. In this study, dynamic grid technology was used to achieve plate motion, and unsteady Reynolds-averaged Navier-Stokes (URANS) equations and shear stress transfer (SST) k-ω turbulence model were adopted to simulate the unsteady aerodynamic behaviour of a 5-car maglev train running at 600 km/h. Two wind tunnel experiments validated the method, and grid independence analysis was also conducted. The unsteady aerodynamic performance and transient flow field around the train during plate braking in tailwind and headwind opening configurations were studied and analysed. As the plates opened, there was a rapid increase in both aerodynamic drag and lift, creating a pulse-like change. The tailwind opening configuration generated relatively large peak aerodynamic forces, whereas the peak forces decreased successively downstream along the train length. As the flow stabilized, periodic fluctuations in the aerodynamic forces of the plates occurred. The interference with the convective field and the impact on the aerodynamic force of the tail car were more significant for the tailwind opening configuration. In addition, the tailwind opening plate caused significant fluctuations in the aerodynamic force of the tail car, with similar effects observed in other cars. From an aerodynamic perspective, the headwind opening configuration yielded better results. These findings can guide the design and implementation of plate brakes for high-speed maglev trains.KEYWORDS: High-speed maglev trainopen directionaerodynamic plate brakingunsteady aerodynamic behaviourflow field Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.Additional informationFundingThis study was supported by the Key R&D Program of Shandong Province (Major Scientific and Technological Innovation Project) [2020CXGC010202], Fundamental Research Funds for the National Natural Science Foundation of China [52172359 and 52372363].
期刊介绍:
The unprecedented modernization and expansion of rail transportation system will require substantial new efforts in scientific research for field-deployable technologies. The International Journal of Rail Transportation (IJRT) aims to provide an open forum for scientists, researchers, and engineers in the world to promote the exchange of the latest scientific and technological innovations in rail transportation; and to advance the state-of-the-art engineering and practices for various types of rail based transportation systems. IJRT covers all main areas of rail vehicle, infrastructure, traction power, operation, communication, and environment. The journal publishes original, significant articles on topics in dynamics and mechanics of rail vehicle, track, and bridge system; planning and design, construction, operation, inspection, and maintenance of rail infrastructure; train operation, control, scheduling and management; rail electrification; signalling and communication; and environmental impacts such as vibration and noise. The editorial policy of the new journal will abide by the highest level of standards in research rigor, ethics, and academic freedom. All published articles in IJRT have undergone rigorous peer review, based on initial editor screening and anonymous refereeing by independent experts. There are no page charges and colour figures are included in the online edition free of charge.