An Automatic Nuclei Segmentation on Microscopic Images using Deep Residual U-Net

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0141061
Ramya Shree H P, Minavathi -, Dinesh M S
{"title":"An Automatic Nuclei Segmentation on Microscopic Images using Deep Residual U-Net","authors":"Ramya Shree H P, Minavathi -, Dinesh M S","doi":"10.14569/ijacsa.2023.0141061","DOIUrl":null,"url":null,"abstract":"Nuclei Segmentation is the preliminary step towards the task of medical image analysis. Nowadays, there exists several deep learning-based techniques based on Convolutional Neural Networks (CNNs) for the task of nuclei segmentation. In this study, we present a neural network for semantic segmentation. This network harnesses the strengths in both residual learning and U-Net methodologies, thereby amplifying cell segmentation performance. This hybrid approach also facilitates the creation of network with diminished parameter requirement. The network incorporates residual units contributes to a smoother training process and mitigate the issue of vanishing gradients. Our model is tested on a microscopy image dataset which is publicly available from the 2018 Data Science Bowl grand challenge and assessed against U-Net and several other state-of-the-art deep learning approaches designed for nuclei segmentation. Our proposed approach showcases a notable improvement in average Intersection over Union (IoU) gain compared to prevailing state-of-the-art techniques, by exhibiting a significant margin of 1.1% and 5.8% higher gains over the original U-Net. Our model also excels across various key indicators, including accuracy, precision, recall and dice-coefficient. The outcomes underscore the potential of our proposed approach as a promising nuclei segmentation method for microscopy image analysis.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0141061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclei Segmentation is the preliminary step towards the task of medical image analysis. Nowadays, there exists several deep learning-based techniques based on Convolutional Neural Networks (CNNs) for the task of nuclei segmentation. In this study, we present a neural network for semantic segmentation. This network harnesses the strengths in both residual learning and U-Net methodologies, thereby amplifying cell segmentation performance. This hybrid approach also facilitates the creation of network with diminished parameter requirement. The network incorporates residual units contributes to a smoother training process and mitigate the issue of vanishing gradients. Our model is tested on a microscopy image dataset which is publicly available from the 2018 Data Science Bowl grand challenge and assessed against U-Net and several other state-of-the-art deep learning approaches designed for nuclei segmentation. Our proposed approach showcases a notable improvement in average Intersection over Union (IoU) gain compared to prevailing state-of-the-art techniques, by exhibiting a significant margin of 1.1% and 5.8% higher gains over the original U-Net. Our model also excels across various key indicators, including accuracy, precision, recall and dice-coefficient. The outcomes underscore the potential of our proposed approach as a promising nuclei segmentation method for microscopy image analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度残差U-Net的显微图像核自动分割
核分割是医学图像分析的第一步。目前已有几种基于卷积神经网络(cnn)的深度学习技术用于核分割任务。在这项研究中,我们提出了一种用于语义分割的神经网络。该网络利用了残差学习和U-Net方法的优势,从而提高了细胞分割的性能。这种混合方法还有助于减少参数要求的网络的创建。残差单元的加入使得训练过程更加平滑,并缓解了梯度消失的问题。我们的模型在显微镜图像数据集上进行了测试,该数据集可从2018年数据科学碗大挑战中公开获得,并针对U-Net和其他几种用于核分割的最先进深度学习方法进行了评估。与当前最先进的技术相比,我们提出的方法显示了平均交汇交汇(IoU)增益的显着改善,比原始的U-Net显示了1.1%和5.8%的显著增益。我们的模型在各种关键指标上也表现出色,包括准确性、精密度、召回率和骰子系数。这些结果强调了我们提出的方法作为一种有前途的显微镜图像分析的核分割方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1