Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-08-08 DOI:10.47679/ijasca.v2i2.35
R. Putra, Iis Dewi Ratih
{"title":"Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing","authors":"R. Putra, Iis Dewi Ratih","doi":"10.47679/ijasca.v2i2.35","DOIUrl":null,"url":null,"abstract":"The Non-Performing Financing (NPF) indicator of one of the Islamic Banks in Indonesia in the 1st to 3rd quarter of 2021 in a row of 9.69%; 9.97%; 9.46%. The NPF movement tends to improve slightly from time to time but still exceeds the maximum limit stipulated in Bank Indonesia’s Regulation Number 23/2/PBI/2021, which is no more than 5%. This shows that the Islamic bank has a financing performance that can be said to be less good. Preventive steps that can be taken to reduce the NPF ratio in order to improve the health of the bank is to classify prospective financing customers. This research was conducted using the K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree, and Logistics Regression classification methods to predict potential financing customers. The dataset is divided into 80% training and 20% testing. It was found that the best classification result was the Naive Bayes Classifier in the proportion of distribution of 80% training data and 20% testing data with an accuracy value of 84.69%, sensitivity of 58.25%, and specificity of 90.16%.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"34 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47679/ijasca.v2i2.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The Non-Performing Financing (NPF) indicator of one of the Islamic Banks in Indonesia in the 1st to 3rd quarter of 2021 in a row of 9.69%; 9.97%; 9.46%. The NPF movement tends to improve slightly from time to time but still exceeds the maximum limit stipulated in Bank Indonesia’s Regulation Number 23/2/PBI/2021, which is no more than 5%. This shows that the Islamic bank has a financing performance that can be said to be less good. Preventive steps that can be taken to reduce the NPF ratio in order to improve the health of the bank is to classify prospective financing customers. This research was conducted using the K-Nearest Neighbor (KNN), Naive Bayes Classifier (NBC), Decision Tree, and Logistics Regression classification methods to predict potential financing customers. The dataset is divided into 80% training and 20% testing. It was found that the best classification result was the Naive Bayes Classifier in the proportion of distribution of 80% training data and 20% testing data with an accuracy value of 84.69%, sensitivity of 58.25%, and specificity of 90.16%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
k近邻、朴素贝叶斯分类器、决策树和逻辑回归在不良融资分类中的比较
印度尼西亚一家伊斯兰银行2021年第1 - 3季度的不良融资(NPF)指标连续为9.69%;9.97%;9.46%。NPF走势不时略有改善,但仍超过印尼银行第23/2/PBI/2021号法规规定的最高限额,即不超过5%。这说明伊斯兰银行的融资业绩可以说不太好。可采取的预防措施是降低NPF比率,以改善银行的健康状况,对潜在的融资客户进行分类。本研究使用k -最近邻(KNN)、朴素贝叶斯分类器(NBC)、决策树和物流回归分类方法来预测潜在的融资客户。数据集分为80%的训练和20%的测试。结果发现,在80%的训练数据和20%的测试数据的分布比例中,朴素贝叶斯分类器的分类效果最好,准确率为84.69%,灵敏度为58.25%,特异性为90.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1