EXPERIMENTAL INVESTIGATION OF SCOUR DOWNSTREAM OF A C-TYPE TRAPEZOIDAL PIANO KEY WEIR WITH STILLING BASIN

Ali Qasim Rdhaiwi, Ali Khoshfetrat, Amirhossein Fathi
{"title":"EXPERIMENTAL INVESTIGATION OF SCOUR DOWNSTREAM OF A C-TYPE TRAPEZOIDAL PIANO KEY WEIR WITH STILLING BASIN","authors":"Ali Qasim Rdhaiwi, Ali Khoshfetrat, Amirhossein Fathi","doi":"10.31272/jeasd.27.6.2","DOIUrl":null,"url":null,"abstract":"In recent years, engineers have focused on finding a solution to reduce scouring downstream of piano key weirs. Piano key weirs have high efficiency in flood flow and a higher discharge coefficient. In this research, a type C trapezoidal piano key weir with a type 1 stilling basin was used. Three discharges and three water depths were also used. The results showed that the existence of the stilling basin reduces scour. In the weir with the stilling basin, the maximum scour depth is reduced and the scouring hole becomes more elongated. The maximum distance of the scouring depth increases compared to the toe of the weir. The maximum scour depth and the maximum scour depth distance in the weirs with the stilling basin are about 63.4% less and 20.4% more, respectively than in the weirs without the stilling basin. Additionally, by increasing the flow rate and decreasing the depth of the downstream flow, the amount of scour increases.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jeasd.27.6.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, engineers have focused on finding a solution to reduce scouring downstream of piano key weirs. Piano key weirs have high efficiency in flood flow and a higher discharge coefficient. In this research, a type C trapezoidal piano key weir with a type 1 stilling basin was used. Three discharges and three water depths were also used. The results showed that the existence of the stilling basin reduces scour. In the weir with the stilling basin, the maximum scour depth is reduced and the scouring hole becomes more elongated. The maximum distance of the scouring depth increases compared to the toe of the weir. The maximum scour depth and the maximum scour depth distance in the weirs with the stilling basin are about 63.4% less and 20.4% more, respectively than in the weirs without the stilling basin. Additionally, by increasing the flow rate and decreasing the depth of the downstream flow, the amount of scour increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有消力池的c型梯形钢琴键堰下游冲刷试验研究
近年来,工程师们一直致力于寻找一种解决方案,以减少钢琴键堰下游的冲刷。钢琴键堰具有防洪效率高、流量系数高的特点。本研究采用C型梯形钢琴键堰加1型止水盆。还使用了三种排放和三种水深。结果表明,静水池的存在减少了冲刷。在有消力池的堰中,最大冲刷深度减小,冲刷孔变长。冲刷深度的最大距离比堰脚增大。加设消力池的堰最大冲刷深度和最大冲刷深度距离分别比不加设消力池的堰小63.4%和大20.4%。此外,通过增加流速和减小下游水流深度,冲刷量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
74
审稿时长
50 weeks
期刊最新文献
A Review of Biogas Production from Small-Scale Anaerobic Digestion Plants Performance Assessments of Direct Contact Serpentine Tube Based Photovoltaic Thermal Module: An Experimental Comparison Comparative Performance of Point-to-Point Multiple Input Multiple Output System under Weibull and Rayleigh Fading Channels Improvement of Air Compressor Cooling with Intercooler Fine Pruning Environmental Monitoring of Land Use/ Land Cover by Integrating Remote Sensing and Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1