This paper proposes a DC-DC step-up converter with a high voltage gain for solar and fuel cell systems. This converter combines a Zeta converter with one basic cell of the coated circuit and a Quadratic-Boost converter by a high-frequency transformer. The outputs of these two converters are connected in a series to boost the output voltage of the combined DC-DC converter. The proposed converter not only can achieve higher voltage gain but also acquire lower voltage stress on the semiconductor devices. Therefore, the devices with lower conduction resistances. Moreover, the circuit is made so that the outputs of each part of the converter keep the same properties as those of the converter that came before the combination, ensuring that each converter's known benefits are maintained. The proposed topology has one switch, which keeps the number of components low. The simulation of 240-watt, input voltage 30-volt, and 100kHz using the PLECS program is obtained to confirm the theoretical analysis of the proposed converter.
{"title":"Quadratic-Boost-Zeta Converter Based on Coat Circuit for High Voltage Gain Applications","authors":"Ahmed Mahmood Ali, Turki K. Hassan","doi":"10.31272/jeasd.28.4.11","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.11","url":null,"abstract":"This paper proposes a DC-DC step-up converter with a high voltage gain for solar and fuel cell systems. This converter combines a Zeta converter with one basic cell of the coated circuit and a Quadratic-Boost converter by a high-frequency transformer. The outputs of these two converters are connected in a series to boost the output voltage of the combined DC-DC converter. The proposed converter not only can achieve higher voltage gain but also acquire lower voltage stress on the semiconductor devices. Therefore, the devices with lower conduction resistances. Moreover, the circuit is made so that the outputs of each part of the converter keep the same properties as those of the converter that came before the combination, ensuring that each converter's known benefits are maintained. The proposed topology has one switch, which keeps the number of components low. The simulation of 240-watt, input voltage 30-volt, and 100kHz using the PLECS program is obtained to confirm the theoretical analysis of the proposed converter.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"2001 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141707566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study examines the combined impact of pre-test curing and soaking periods on the soil's resistance to collapse those results from treating gypseous sand with varying amounts of nanoclay. The soil comes from the Iraqi city of Najaf. The soil sample is mainly sand. The nanoclay named "Montmorillonite K10" is used, and it is non-toxic. The tests are performed with a computerized Oedometer. The collapse potential is estimated according to a single Oedometer test (SOT), where the specimens are initially dry and then soaked under a stress level of 200 kPa. Four data sets related to the percentages of 0, 3, 6, and 12% nanoclay are used. Each data set comprises three groups of pre-tests for curing duration and different soaking durations. All experiments have a constant initial dry density of 1.64 g/cm3, water moisture of 3%, and gypsum content of 29%. The findings of this study show that the collapse potential (CP) of natural soil specimens decreases as the pre-test curing time increases. Generally, there is a decrease in CP due to adding the nanoclay and 6% of the nanoclay exhibited the highest reduction in CP. Also, there is an increase in the pre-test curing for the nanoclay-treated soil specimens, which leads to an increase in the CP related to the no-curing state.
{"title":"Interaction of Curing and Soaking on Collapse Potential of Nanoclay-Treated Soil","authors":"Suha Aldarraji, Navid Ganjian","doi":"10.31272/jeasd.28.4.7","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.7","url":null,"abstract":"This study examines the combined impact of pre-test curing and soaking periods on the soil's resistance to collapse those results from treating gypseous sand with varying amounts of nanoclay. The soil comes from the Iraqi city of Najaf. The soil sample is mainly sand. The nanoclay named \"Montmorillonite K10\" is used, and it is non-toxic. The tests are performed with a computerized Oedometer. The collapse potential is estimated according to a single Oedometer test (SOT), where the specimens are initially dry and then soaked under a stress level of 200 kPa. Four data sets related to the percentages of 0, 3, 6, and 12% nanoclay are used. Each data set comprises three groups of pre-tests for curing duration and different soaking durations. All experiments have a constant initial dry density of 1.64 g/cm3, water moisture of 3%, and gypsum content of 29%. The findings of this study show that the collapse potential (CP) of natural soil specimens decreases as the pre-test curing time increases. Generally, there is a decrease in CP due to adding the nanoclay and 6% of the nanoclay exhibited the highest reduction in CP. Also, there is an increase in the pre-test curing for the nanoclay-treated soil specimens, which leads to an increase in the CP related to the no-curing state.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methaq Kadhum, Mohammad Malkawi, Enas Rawashdeh, Article Info
Efficiency is a crucial factor when handling the retrieval and storage of data from vast amounts of records in a Big Data repository. These systems require a subset of data that can be accommodated within the combined physical memory of a cluster of servers. It becomes impractical to analyze all of the data if its size exceeds the available memory capacity. Retrieving data from virtual storage, primarily hard disks, is significantly slower compared to accessing data from main memory, resulting in increased access time and diminished performance. To address this, a proposed model aims to enhance performance by identifying the most suitable data locality structure within a big data set and reorganizing the data schema accordingly; by locality, it has been referred to as a particular access pattern. This allows transactions to be executed on data residing in the fastest memory layer, such as cache, main memory, or disk cache
{"title":"Enhancing Big Data Performance Through Graph Coloring-Based Locality of Reference","authors":"Methaq Kadhum, Mohammad Malkawi, Enas Rawashdeh, Article Info","doi":"10.31272/jeasd.28.4.5","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.5","url":null,"abstract":"Efficiency is a crucial factor when handling the retrieval and storage of data from vast amounts of records in a Big Data repository. These systems require a subset of data that can be accommodated within the combined physical memory of a cluster of servers. It becomes impractical to analyze all of the data if its size exceeds the available memory capacity. Retrieving data from virtual storage, primarily hard disks, is significantly slower compared to accessing data from main memory, resulting in increased access time and diminished performance. To address this, a proposed model aims to enhance performance by identifying the most suitable data locality structure within a big data set and reorganizing the data schema accordingly; by locality, it has been referred to as a particular access pattern. This allows transactions to be executed on data residing in the fastest memory layer, such as cache, main memory, or disk cache","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"120 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141697054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Kirubadurai, R. Jaganraj, G. Jegadeeswari, C. Jayabalan
An intercooler serves as a heat exchanger between the several stages of the working compressor, assisting in the transmission of thermal energy between fluids of varying temperatures. This article is about the experimental analysis of the effectiveness of an intercooler. Multiple variables oversee the performance evaluation under different circumstances. Standard operational values are used to calculate performance evaluation metrics such as total heat transfer coefficient and others. Heat rejection of intercoolers has been enhanced from 61% to 65% by the variation of different fin lengths. Furthermore, the recently added intercooler's isothermal efficiency, which reached an astounding 56.5% significantly, outperformed the earlier unit. This serves to highlight how well the intercooler design was modified. Furthermore, the effectiveness of the Intercooler was assessed considering the circumstances during operation. The intercooler fin is primarily concerned with the performance of the air compressor. This work analyses the many characteristics of fin length, fin number, and fin diameter. When compared to the existing intercooler, this modified intercooler has a high performance
{"title":"Improvement of Air Compressor Cooling with Intercooler Fine Pruning","authors":"B. Kirubadurai, R. Jaganraj, G. Jegadeeswari, C. Jayabalan","doi":"10.31272/jeasd.28.4.8","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.8","url":null,"abstract":"An intercooler serves as a heat exchanger between the several stages of the working compressor, assisting in the transmission of thermal energy between fluids of varying temperatures. This article is about the experimental analysis of the effectiveness of an intercooler. Multiple variables oversee the performance evaluation under different circumstances. Standard operational values are used to calculate performance evaluation metrics such as total heat transfer coefficient and others. Heat rejection of intercoolers has been enhanced from 61% to 65% by the variation of different fin lengths. Furthermore, the recently added intercooler's isothermal efficiency, which reached an astounding 56.5% significantly, outperformed the earlier unit. This serves to highlight how well the intercooler design was modified. Furthermore, the effectiveness of the Intercooler was assessed considering the circumstances during operation. The intercooler fin is primarily concerned with the performance of the air compressor. This work analyses the many characteristics of fin length, fin number, and fin diameter. When compared to the existing intercooler, this modified intercooler has a high performance","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"157 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141692877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maria Patrice Lajom, Joseph Paul Remigio, Edwin Arboleda, Rhen John Rey Sacala
An Eggplant Fruit and Shoot Borer (EFSB) is a disease that affects the entirety of the eggplant fruit if not detected. Hence, a detector was proposed in the form of a handheld gun. It was designed and developed to non-invasively classify eggplant fruits that are non-infested and infested with EFSB. Using an Arduino Nano as its microcontroller and a near-infrared spectroscopy (NIRS) module, insect infestation is determined and displayed through its OLED display. Measured reflectance data through the NIRS module of the detector is then stored inside a MicroSD module for further use. Since the prototype was developed for online monitoring, portability was given of utmost importance, pattering the design in the form of a handheld gun, inside of which was powered by a 9V rechargeable battery. The 3D-printed chassis of the detector houses the aforementioned components and modules, alongside with switches for power and near-infrared detection. Through Support Vector Machine (SVM), the classifier model was trained and developed using Jupyter and was extracted as a C++ code for the Arduino Nano module. Compared with a farmer's traditional performance in terms of accuracy, precision, and speed, the prototype performed better with an accuracy of 84%, precision of 72.83%, and an average speed of 9.736 seconds.
{"title":"Design and Development of Eggplant Fruit and Shoot Borer (Leucinodes Orbonalis) Detector Using Near-Infrared Spectroscopy","authors":"Maria Patrice Lajom, Joseph Paul Remigio, Edwin Arboleda, Rhen John Rey Sacala","doi":"10.31272/jeasd.28.4.3","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.3","url":null,"abstract":"An Eggplant Fruit and Shoot Borer (EFSB) is a disease that affects the entirety of the eggplant fruit if not detected. Hence, a detector was proposed in the form of a handheld gun. It was designed and developed to non-invasively classify eggplant fruits that are non-infested and infested with EFSB. Using an Arduino Nano as its microcontroller and a near-infrared spectroscopy (NIRS) module, insect infestation is determined and displayed through its OLED display. Measured reflectance data through the NIRS module of the detector is then stored inside a MicroSD module for further use. Since the prototype was developed for online monitoring, portability was given of utmost importance, pattering the design in the form of a handheld gun, inside of which was powered by a 9V rechargeable battery. The 3D-printed chassis of the detector houses the aforementioned components and modules, alongside with switches for power and near-infrared detection. Through Support Vector Machine (SVM), the classifier model was trained and developed using Jupyter and was extracted as a C++ code for the Arduino Nano module. Compared with a farmer's traditional performance in terms of accuracy, precision, and speed, the prototype performed better with an accuracy of 84%, precision of 72.83%, and an average speed of 9.736 seconds.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141708803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, great attention has been given to the idea of a smart environment. It often involves the use of reconfigurable intelligent surfaces (RIS) for the management of electromagnetic wave reflections as the world awaits the emergence of 6G. Changeable intelligent surfaces may enhance the creation of wireless communication. The design and analysis of several unit cell reflections are presented in this work. The first design relies on the Switching Technique which involves switching on and off to acquire the phase as well as the coefficient of reflection to accommodate 6G standards. The unit cells design is configured to operate in the millimeter band and X band. In the second design, the radius of the circular patch was changed to adjustment of the phase and reflection coefficient. The use of Floquet technique is employed in investigating the scattering characteristics of a unit cell's constituent elements based on the assumption that every element consists of an extremely iterating periodic structure. To determine the optimal force reflection and the transformation phase, the return loss alongside reflection phase graphs of each resonant component were examined. The simulation results indicate that the first design exhibits a reflection phase shift range of -180 to 90 and a reflection magnitude over 0.93 at a frequency of 11GHz. In contrast, the second design demonstrates a reflection phase shift range of -135 to 135 and a reflection magnitude surpassing 0.9 at a frequency of 28GHz. The analysis and simulation of the design models were carried out using the CST model.
{"title":"Design and Implementation of Different Unit Cells for Reconfigurable Intelligent Surface","authors":"Jaafar Qassim Kadhim, Adheed H. Sallomi, I. Svyd","doi":"10.31272/jeasd.28.4.1","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.1","url":null,"abstract":"Recently, great attention has been given to the idea of a smart environment. It often involves the use of reconfigurable intelligent surfaces (RIS) for the management of electromagnetic wave reflections as the world awaits the emergence of 6G. Changeable intelligent surfaces may enhance the creation of wireless communication. The design and analysis of several unit cell reflections are presented in this work. The first design relies on the Switching Technique which involves switching on and off to acquire the phase as well as the coefficient of reflection to accommodate 6G standards. The unit cells design is configured to operate in the millimeter band and X band. In the second design, the radius of the circular patch was changed to adjustment of the phase and reflection coefficient. The use of Floquet technique is employed in investigating the scattering characteristics of a unit cell's constituent elements based on the assumption that every element consists of an extremely iterating periodic structure. To determine the optimal force reflection and the transformation phase, the return loss alongside reflection phase graphs of each resonant component were examined. The simulation results indicate that the first design exhibits a reflection phase shift range of -180 to 90 and a reflection magnitude over 0.93 at a frequency of 11GHz. In contrast, the second design demonstrates a reflection phase shift range of -135 to 135 and a reflection magnitude surpassing 0.9 at a frequency of 28GHz. The analysis and simulation of the design models were carried out using the CST model.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"132 31","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141714575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azhar Hussein Neama, Ghanim A. Al-Rubaye, Article Info
Multiple-input multiple-output (MIMO) technologies use multiple antennas at the sender and the receiver to get the high data rate that the next-generation communication system needs. This paper compares MIMO systems using the Quadrature Phase Shift Keying (QPSK) modulation scheme for two-channel distributions of Rayleigh and Weibull types. The performance of the work is far with the Minimum Mean Square Equalizer (MMSE) in terms of Bit Error Rate (BER) for various antenna number situations on the transmitter and receiver sides. The MIMO module is carried out using MATLAB code. The channel noise will be a signal of random noise that is generated. To mitigate the impact of inter-channel interference, the MMSE approach employs inverse filtering at the receiver, and BER will be calculated. According to simulation results, the system's performance is primarily influenced by the number of antennas; it decreased as the number of antennas increased, and the BER of the Weibull channel decreased as the two-parameter value increased
{"title":"Comparative Performance of Point-to-Point Multiple Input Multiple Output System under Weibull and Rayleigh Fading Channels","authors":"Azhar Hussein Neama, Ghanim A. Al-Rubaye, Article Info","doi":"10.31272/jeasd.28.4.12","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.12","url":null,"abstract":"Multiple-input multiple-output (MIMO) technologies use multiple antennas at the sender and the receiver to get the high data rate that the next-generation communication system needs. This paper compares MIMO systems using the Quadrature Phase Shift Keying (QPSK) modulation scheme for two-channel distributions of Rayleigh and Weibull types. The performance of the work is far with the Minimum Mean Square Equalizer (MMSE) in terms of Bit Error Rate (BER) for various antenna number situations on the transmitter and receiver sides. The MIMO module is carried out using MATLAB code. The channel noise will be a signal of random noise that is generated. To mitigate the impact of inter-channel interference, the MMSE approach employs inverse filtering at the receiver, and BER will be calculated. According to simulation results, the system's performance is primarily influenced by the number of antennas; it decreased as the number of antennas increased, and the BER of the Weibull channel decreased as the two-parameter value increased","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"14 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evaluation of the land use/ land cover (LULC) case over large regions is very important in a variety of domains, including natural resources such as soil, water, etc., and climate change risks and LULC change has emerged as a high anxiety for the environment. Therefore, we tested and compared the performance of three classification algorithms: Support Vector Machines (SVM), Random Trees (RT), and Maximum Likelihood (MaxL) to derive and extract LULC information for the district of Sarayönü/ Konya across five distinct classes: water, plantation, grassland, built-up, and bare land. Two remote sensing indices, the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), were used as supplementary inputs for the classification of LULC. To evaluate the performance of the algorithms, a confusion matrix was employed. The average overall accuracy of support vector machines, random trees, and maximum likelihood algorithms was found 85.60%, 79.20%, and 74.80%, respectively, and 82.00%, 74.00%, and 68.50% for the Kappa coefficient. These results indicate that the support vector machines algorithm outperforms other algorithms in terms of accuracy. As a result of the research, it was determined that classification algorithms integrated with remote sensing in LULC change monitoring/determination could produce accurate classification maps that can be used as base data. This is due to the ability of machine learning algorithms to learn complex patterns, adapt to diverse data, and continuously improve, making them achieve higher accuracy compared to traditional classifiers. Therefore, their use was recommended for decision-makers.
{"title":"Environmental Monitoring of Land Use/ Land Cover by Integrating Remote Sensing and Machine Learning Algorithms","authors":"Firas Aljanabi, M. Dedeoğlu, C. Şeker","doi":"10.31272/jeasd.28.4.4","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.4","url":null,"abstract":"Evaluation of the land use/ land cover (LULC) case over large regions is very important in a variety of domains, including natural resources such as soil, water, etc., and climate change risks and LULC change has emerged as a high anxiety for the environment. Therefore, we tested and compared the performance of three classification algorithms: Support Vector Machines (SVM), Random Trees (RT), and Maximum Likelihood (MaxL) to derive and extract LULC information for the district of Sarayönü/ Konya across five distinct classes: water, plantation, grassland, built-up, and bare land. Two remote sensing indices, the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), were used as supplementary inputs for the classification of LULC. To evaluate the performance of the algorithms, a confusion matrix was employed. The average overall accuracy of support vector machines, random trees, and maximum likelihood algorithms was found 85.60%, 79.20%, and 74.80%, respectively, and 82.00%, 74.00%, and 68.50% for the Kappa coefficient. These results indicate that the support vector machines algorithm outperforms other algorithms in terms of accuracy. As a result of the research, it was determined that classification algorithms integrated with remote sensing in LULC change monitoring/determination could produce accurate classification maps that can be used as base data. This is due to the ability of machine learning algorithms to learn complex patterns, adapt to diverse data, and continuously improve, making them achieve higher accuracy compared to traditional classifiers. Therefore, their use was recommended for decision-makers.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"7 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141694309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahssan Ashibil, P. Víg, Viktor Erdélyi, János Tóth, I. Farkas
Solar energy is the most focused in the field of renewable energy. It is a clean, green, environmentally friendly energy source. One of the modern technologies utilized by researchers to investigate the wasted heat by the photovoltaic module is the photovoltaic thermal collector, which simultaneously provides thermal and electrical power for various engineering applications. This study presented a new configuration of a water-cooled photovoltaic thermal module that utilizes a copper serpentine tube attached directly using thermal silicon to the poly-crystalline PV module for water circulation. The created PV/T was well-insulated using fiber material, insulation cork, and Wooden parts. The water flow was circulated via a DC pump with low power consumption. The fabricated unit was compared to the standalone photovoltaic module for the performance evaluation. The main result showed a significant enhancement in the electrical productivity of the photovoltaic thermal module compared to the standalone unit. The cell temperature was reduced by 13.3% compared to the standalone photovoltaic module. Accordingly, the water-based PV/T module effectively eliminated the heat dissipated to the surrounding region by the PV module by using a serpentine tube, assuring sustainable contribution.
{"title":"Performance Assessments of Direct Contact Serpentine Tube Based Photovoltaic Thermal Module: An Experimental Comparison","authors":"Ahssan Ashibil, P. Víg, Viktor Erdélyi, János Tóth, I. Farkas","doi":"10.31272/jeasd.28.4.6","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.6","url":null,"abstract":"Solar energy is the most focused in the field of renewable energy. It is a clean, green, environmentally friendly energy source. One of the modern technologies utilized by researchers to investigate the wasted heat by the photovoltaic module is the photovoltaic thermal collector, which simultaneously provides thermal and electrical power for various engineering applications. This study presented a new configuration of a water-cooled photovoltaic thermal module that utilizes a copper serpentine tube attached directly using thermal silicon to the poly-crystalline PV module for water circulation. The created PV/T was well-insulated using fiber material, insulation cork, and Wooden parts. The water flow was circulated via a DC pump with low power consumption. The fabricated unit was compared to the standalone photovoltaic module for the performance evaluation. The main result showed a significant enhancement in the electrical productivity of the photovoltaic thermal module compared to the standalone unit. The cell temperature was reduced by 13.3% compared to the standalone photovoltaic module. Accordingly, the water-based PV/T module effectively eliminated the heat dissipated to the surrounding region by the PV module by using a serpentine tube, assuring sustainable contribution.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"83 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141690642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahad Fadhil ALRubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, A. Al-Allaq, Dhuha Ahmed Mohammed
The present study focuses on the technique of hardness removal by using a novel reactor performing an electrocoagulation (EC) process. The variation of alkalinity is also recorded. Continuous flow experiments were conducted for Total Hardness (TH) removal using a transparent plastic reactor using aluminum plate electrodes that have holes so that the water flows through the plates in a zigzag way. The influence of various operating parameters such as the number of plates (two and four), flow rate (600, 1000 L/h), and water type (Tigris River & rejected water from Reverse Osmosis system RO) was investigated. The results showed that an increase in the number of electrodes led to an increase in the total hardness removal efficiency. In addition, the increase in the flow rate led to a decrease in the removal efficiency. For the rejected RO water type, the highest hardness removal rate was 16.16% for 4 plates electrodes and 600 L/h flow rate while for the river water was 29% for 4 plates electrodes and 1000 L/h.
{"title":"Hardness Removal by A Continuous Flow Electrochemical Reactor from Different Types of Water","authors":"Shahad Fadhil ALRubaye, Naseer A. Al Haboubi, Hussein A. Al-Amili, A. Al-Allaq, Dhuha Ahmed Mohammed","doi":"10.31272/jeasd.28.4.2","DOIUrl":"https://doi.org/10.31272/jeasd.28.4.2","url":null,"abstract":"The present study focuses on the technique of hardness removal by using a novel reactor performing an electrocoagulation (EC) process. The variation of alkalinity is also recorded. Continuous flow experiments were conducted for Total Hardness (TH) removal using a transparent plastic reactor using aluminum plate electrodes that have holes so that the water flows through the plates in a zigzag way. The influence of various operating parameters such as the number of plates (two and four), flow rate (600, 1000 L/h), and water type (Tigris River & rejected water from Reverse Osmosis system RO) was investigated. The results showed that an increase in the number of electrodes led to an increase in the total hardness removal efficiency. In addition, the increase in the flow rate led to a decrease in the removal efficiency. For the rejected RO water type, the highest hardness removal rate was 16.16% for 4 plates electrodes and 600 L/h flow rate while for the river water was 29% for 4 plates electrodes and 1000 L/h.","PeriodicalId":33282,"journal":{"name":"Journal of Engineering and Sustainable Development","volume":"50 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141697784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}