Min Zhang, Jian Fang, Hongbin Wang, Fangzhou Hao, Xiang Lin, Yong Wang
{"title":"Application of graphene gas sensor technological convergence PSO-SVM in distribution transformer insulation condition monitoring and fault diagnosis","authors":"Min Zhang, Jian Fang, Hongbin Wang, Fangzhou Hao, Xiang Lin, Yong Wang","doi":"10.1166/mex.2023.2517","DOIUrl":null,"url":null,"abstract":"This study aims to improve the real-time monitoring and fault diagnosis of distribution transformers by utilizing a combination of five thin film gas detectors, these detectors include metal-modified graphene composite films and SnO 2 /RGO humidity sensors, which were prepared using the hydrothermal method. The experiment focused on investigating humidity and main fault characteristic gases that can reflect the insulation status of transformers. Additionally, a gas sensor array was constructed using a deep confidence neural network model. Based on the analysis of dissolved gas in transformer oil, the study extensively discusses the insulation fault diagnosis model and constructs the transformer fault diagnosis model using various methods including TRM, Particle swarm optimization support vector machine. The results demonstrated that the SnO 2 /RGO thin film humidity sensor exhibited high humidity sensitivity, and the other thin film gas sensors also exhibited good sensitivity. The average accuracy of the three classification methods mentioned is 80%, 92%, and 96%, respectively. These findings highlighted that the vector machine model not only improved the fault diagnosis accuracy but also possessed the characteristics of fewer parameters and a fast rate of convergence. Consequently, it effectively addressed the issue of early diagnosis of potential transformer faults. This study was of significant practical importance for ensuring the secure operation of the power grid.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":"55 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/mex.2023.2517","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to improve the real-time monitoring and fault diagnosis of distribution transformers by utilizing a combination of five thin film gas detectors, these detectors include metal-modified graphene composite films and SnO 2 /RGO humidity sensors, which were prepared using the hydrothermal method. The experiment focused on investigating humidity and main fault characteristic gases that can reflect the insulation status of transformers. Additionally, a gas sensor array was constructed using a deep confidence neural network model. Based on the analysis of dissolved gas in transformer oil, the study extensively discusses the insulation fault diagnosis model and constructs the transformer fault diagnosis model using various methods including TRM, Particle swarm optimization support vector machine. The results demonstrated that the SnO 2 /RGO thin film humidity sensor exhibited high humidity sensitivity, and the other thin film gas sensors also exhibited good sensitivity. The average accuracy of the three classification methods mentioned is 80%, 92%, and 96%, respectively. These findings highlighted that the vector machine model not only improved the fault diagnosis accuracy but also possessed the characteristics of fewer parameters and a fast rate of convergence. Consequently, it effectively addressed the issue of early diagnosis of potential transformer faults. This study was of significant practical importance for ensuring the secure operation of the power grid.