Santin Ilaria, Roncoroni Giacomo, Forte Emanuele, Gutgesell Pietro, Pipan Michele
{"title":"GPR modelling and inversion to quantify the debris content within ice","authors":"Santin Ilaria, Roncoroni Giacomo, Forte Emanuele, Gutgesell Pietro, Pipan Michele","doi":"10.1002/nsg.12274","DOIUrl":null,"url":null,"abstract":"Abstract Scattering is often detected when ground‐penetrating radar (GPR) surveys are performed on glaciers at different latitudes and in various environments. This event is often seen as an undesirable feature on data, but it can be exploited to quantify the debris content in mountain glaciers through a dedicated scattering inversion approach. At first, we considered the possible variables affecting the scattering mechanisms, namely the dielectric properties of the scatterers, their size, shape and quantity, as well as the wavelength of the electromagnetic (EM) incident field to define the initial conditions for the inversion. Each parameter was independently evaluated with forward modelling tests to quantify its effect in the scattering mechanism. After extensive tests, we found that the dimension and the amount of scatterers are the crucial parameters. We further performed modelling randomizing the scatterer distribution and dimension, critically evaluating the stability of the approach and the complexity of the models. After the tests on synthetic data, the inversion procedure was applied to field datasets, acquired on the Eastern Gran Zebrù glacier (Central Italian Alps). The results show that even a low percentage of debris can produce high scattering. The proposed methodology is quite robust and able to provide quantitative estimates of the debris content within mountain glaciers in different conditions.","PeriodicalId":49771,"journal":{"name":"Near Surface Geophysics","volume":"85 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Near Surface Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nsg.12274","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Scattering is often detected when ground‐penetrating radar (GPR) surveys are performed on glaciers at different latitudes and in various environments. This event is often seen as an undesirable feature on data, but it can be exploited to quantify the debris content in mountain glaciers through a dedicated scattering inversion approach. At first, we considered the possible variables affecting the scattering mechanisms, namely the dielectric properties of the scatterers, their size, shape and quantity, as well as the wavelength of the electromagnetic (EM) incident field to define the initial conditions for the inversion. Each parameter was independently evaluated with forward modelling tests to quantify its effect in the scattering mechanism. After extensive tests, we found that the dimension and the amount of scatterers are the crucial parameters. We further performed modelling randomizing the scatterer distribution and dimension, critically evaluating the stability of the approach and the complexity of the models. After the tests on synthetic data, the inversion procedure was applied to field datasets, acquired on the Eastern Gran Zebrù glacier (Central Italian Alps). The results show that even a low percentage of debris can produce high scattering. The proposed methodology is quite robust and able to provide quantitative estimates of the debris content within mountain glaciers in different conditions.
期刊介绍:
Near Surface Geophysics is an international journal for the publication of research and development in geophysics applied to near surface. It places emphasis on geological, hydrogeological, geotechnical, environmental, engineering, mining, archaeological, agricultural and other applications of geophysics as well as physical soil and rock properties. Geophysical and geoscientific case histories with innovative use of geophysical techniques are welcome, which may include improvements on instrumentation, measurements, data acquisition and processing, modelling, inversion, interpretation, project management and multidisciplinary use. The papers should also be understandable to those who use geophysical data but are not necessarily geophysicists.